【面向计算机的数理逻辑/软件理论基础笔记】一阶谓词逻辑系统的补充知识点:代换、自然演绎规则

矛盾

  • 公式样例:类似于 r ∧ ¬ r r\wedge \neg r r¬r或者 ¬ p ∧ p \neg p\wedge p ¬pp这样的表达式
  • 符号: ⊥ \perp
  • 不矛盾:符号 ⊤ \top ,与矛盾的关系: ⊥ : = ¬ ⊤ \perp := \neg \top :=¬

等价

如果 p ⊣ q , p ⊢ q p \dashv q,p \vdash q pq,pq,则 p ⊣ ⊢ p p \dashv \vdash p pp

代换

  • 定义:给定变元 x x x、项 t t t、公式 A ( x ) A(x) A(x),定义 A ( t ) A(t) A(t)为用 t t t代替 A A A中的变量 x x x的每个自由出现而得到的公式。

有些教材用 ϕ \phi ϕ表示公式,用 ϕ [ t / x ] \phi[t/x] ϕ[t/x]表示用 t t t代换 A A A中的变量 x x x

自然演绎规则

  • 相等的证明规则
    • i i i规则

      • 定义:任何项 t t t必然和它本身相等
      • 公式表示:
        i = t = t i = \frac{}{t=t} i=t=t

      分母为空表示这个规则不需要任何前提条件,对于不需要前提条件的规则,我们称之为公理。

    • e e e规则

      • 范例:
        • 因为 y ∗ ( w + 2 ) y * (w +2) y(w+2)等于 y ∗ w + y ∗ 2 y * w + y * 2 yw+y2
          所以由 z ⩾ y ∗ ( w + 2 ) z \geqslant y * ( w + 2 ) zy(w+2)
          可以推出 z ⩾ y ∗ w + y ∗ 2 z \geqslant y * w + y * 2 zyw+y2
      • 公式定义
        e = t 1 = t 2 ∧ A ( t 1 ) A ( t 2 ) e = \frac{t_1=t_2\wedge A(t_1)}{A(t_2)} e=A(t2)t1=t2A(t1)

      表示当 t 1 = t 2 t_1=t_2 t1=t2 t 1 t_1 t1代换公式 A A A x x x的结果可以得到 t 2 t_2 t2代换公式 A A A x x x的。

    • 基本的证明过程:
      ( x + 1 ) = ( 1 + x ) 前 提 ( x + 1 > 1 ) → ( x + 1 > 0 ) 前 提 ( 1 + x > 1 ) → ( 1 + x > 0 ) = e 1 , 2 \begin{aligned} &(x+1)=(1+x)&& 前提 \\ &(x+1>1)\to (x+1>0)&& 前提 \\ &(1+x>1)\to (1+x>0)&& =e1,2 \\ \end{aligned} (x+1)=(1+x)(x+1>1)(x+1>0)(1+x>1)(1+x>0)=e1,2

      • 由上述证明过程确定了下列矢列的有效性:
        • x + 1 = 1 + x x+1 = 1+x x+1=1+x
        • ( x + 1 > 1 ) → ( x + 1 > 0 ) ⊢ ( 1 + x > 1 ) → ( 1 + x > 0 ) > 0 (x+1>1)\to (x+1>0)\vdash (1+x>1)\to (1+x>0)>0 (x+1>1)(x+1>0)(1+x>1)(1+x>0)>0
      • 在此证明情况下,我们假设 t 1 t_1 t1 ( x + 1 ) (x+1) (x+1) t 2 t_2 t2 ( 1 + x ) (1+x) (1+x) A ( x ) A(x) A(x) ( x > 1 ) → ( x > 0 ) (x>1)\to(x>0) (x>1)(x>0)。我们使用了规则 = e =e =e,消去了 t 1 = t 2 t_1=t_2 t1=t2这个等式,然后将 t 1 t_1 t1 t 2 t_2 t2代换公式 A A A x x x后即可得到证明结论
  • 全称量词的证明规则:
    • ∀ x   e \forall x \ e x e规则:若 ∀ x   A ( x ) \forall x \ A(x) x A(x)是真的,可以将 A ( x ) A(x) A(x)中的 x x x用任何项 t t t去替换( t t t关于 A ( x ) A(x) A(x)中的 x x x是自由的),并且可以得出 A ( t ) A(t) A(t)也是真的。
      • 公式表示:
        ∀ x   e = ∀ x   A ( x ) A ( t ) \forall x \ e = \frac{\forall x \ A(x)}{A(t)} x e=A(t)x A(x)
  • 例题一:
    • 证明: ∀ x ( P ( x ) → Q ( x ) ) , ∀ x P ( x ) ⊢ ∀ x Q ( x ) \forall x (P(x)\to Q(x)),\forall x P(x) \vdash \forall x Q(x) x(P(x)Q(x)),xP(x)xQ(x)
    • 答案:
      ( 1 ) ∀ x ( P ( x ) → Q ( x ) ) 前 提 ( 2 ) ∀ x   P ( x ) 前 提 ( 3 ) P ( x 0 ) → Q ( x 0 ) ∀ x   e 1 ( 4 ) P ( x 0 ) ∀ x   e 2 ( 5 ) Q ( x 0 ) → e 3 , 4 ( 6 ) ∀ x Q ( x ) ∀ x   i 3 − 5 \begin{aligned} &(1)\forall x (P(x)\to Q(x))&&前提\\ &(2)\forall x \ P(x)&&前提\\ &(3)P(x_0)\to Q(x_0)&&\forall x \ e_1\\ &(4)P(x_0)&&\forall x \ e_2\\ &(5)Q(x_0)&&\to e_{3,4}\\ &(6)\forall x Q(x)&&\forall x \ i_{3-5}\\ \end{aligned} (1)x(P(x)Q(x))(2)x P(x)(3)P(x0)Q(x0)(4)P(x0)(5)Q(x0)(6)xQ(x)x e1x e2e3,4x i35
    • 解释:
      • 题目要求根据前提 ∀ x ( P ( x ) → Q ( x ) ) \forall x (P(x)\to Q(x)) x(P(x)Q(x)) ∀ x P ( x ) \forall x P(x) xP(x)推导出结论 ∀ x Q ( x ) \forall x Q(x) xQ(x),我们的主要思路为通过证明 Q ( x 0 ) Q(x_0) Q(x0)成立来证明 ∀ x Q ( x ) 成 立 \forall x Q(x)成立 xQ(x),为了证明后者,我们只需要证明 P ( x 0 ) → Q ( x 0 ) P(x_0)\to Q(x_0) P(x0)Q(x0) P ( x 0 ) P(x_0) P(x0)成立,而他们本身就是两个前提的实例(对项 x 0 x_0 x0使用 ∀ x   e \forall x \ e x e规则)实现;
      • 我们根据第一个前提 ∀ x ( P ( x ) → Q ( x ) ) \forall x (P(x)\to Q(x)) x(P(x)Q(x))和规则 ∀ x   e \forall x \ e x e、任意变元 x 0 x_0 x0可以得到第三个公式 P ( x 0 ) → Q ( x 0 ) P(x_0)\to Q(x_0) P(x0)Q(x0),表明对于任意一个 x 0 x_0 x0,都满足推导公式 P ( x 0 ) → Q ( x 0 ) P(x_0)\to Q(x_0) P(x0)Q(x0)
      • 再根据第二个前提 ∀ x   P ( x ) \forall x \ P(x) x P(x)和规则 ∀ x   e \forall x \ e x e、任意变元 x 0 x_0 x0可以得到第四个公式 P ( x 0 ) P(x_0) P(x0),表明对于任意一个 x 0 x_0 x0,都满足推导公式 P ( x 0 ) P(x_0) P(x0)
      • 根据规则 e e e,我们将公式4带入公式3,可以得到公式5: Q ( x 0 ) Q(x_0) Q(x0)
  • 例题二:
    • 证明: P ( t ) , ∀ x ( P ( x ) → ¬ Q ( x ) ) ⊢ ¬ Q ( t ) P(t),\forall x(P(x)\to \neg Q(x)) \vdash \neg Q(t) P(t),x(P(x)¬Q(x))¬Q(t)
    • 答案:
      ( 1 ) P ( t ) 前 提 ( 2 ) ∀ x ( P ( x ) → ¬ Q ( x ) ) 前 提 ( 3 ) P ( t ) → ¬ Q ( t ) ∀ x   e 2 ( 4 ) ¬ Q ( t ) → e 3 , 1 \begin{aligned} &(1)P(t)&&前提\\ &(2)\forall x (P(x) \to \neg Q(x))&&前提\\ &(3)P(t)\to \neg Q(t)&&\forall x \ e_2\\ &(4)\neg Q(t)&&\to e_{3,1}\\ \end{aligned} (1)P(t)(2)x(P(x)¬Q(x))(3)P(t)¬Q(t)(4)¬Q(t)x e2e3,1
  • 存在量词的证明规则:
    • ∃ x   i \exist x \ i x i规则:只要对某项 t t t,有 A ( t ) A(t) A(t),那么,我们可以推导出 ∃ x   A ( x ) \exist x \ A(x) x A(x)
  • 例题三:
    • 证明: ∀ x   A ( x ) ⊢ ∃ x   A ( x ) \forall x \ A(x) \vdash \exist x \ A(x) x A(x)x A(x)
    • 答案:
      ( 1 ) ∀ x A ( x ) 前 提 ( 2 ) A ( x ) ∀ x   e 1 ( 3 ) ∃ x   A ( x ) ∃ x   i 2 \begin{aligned} &(1)\forall x A(x)&&前提\\ &(2)A(x)&&\forall x \ e_1\\ &(3) \exist x \ A(x)&&\exist x \ i_2\\ \end{aligned} (1)xA(x)(2)A(x)(3)x A(x)x e1x i2
    • 解释:公式2表示把 x x x看作参数带入到 A ( x ) A(x) A(x)中,推出 A ( x ) A(x) A(x)成立
  • 例题四:
    • 证明: ∀ x ( P ( x ) → Q ( x ) ) , ∃ x   P ( x ) ⊢ ∃ x   Q ( x ) \forall x (P(x)\to Q(x)),\exist x \ P(x) \vdash \exist x \ Q(x) x(P(x)Q(x)),x P(x)x Q(x)
    • 答案:
      ( 1 ) ∀ x ( P ( x ) → Q ( x ) ) 前 提 ( 2 ) ∃ x   P ( x ) 前 提 ( 3 ) P ( x 0 ) 假 设 ( 4 ) P ( x 0 ) → Q ( x 0 ) ∀ x   e 1 ( 5 ) Q ( x 0 ) → e 3 , 4 ( 6 ) ∃ x   Q ( x ) ∃ x   i 5 ( 7 ) ∃ x   Q ( x ) ∃ x   e 2 , 3 − 6 \begin{aligned} &(1)\forall x (P(x)\to Q(x))&&前提\\ &(2)\exist x \ P(x)&&前提\\ &(3)P(x_0)&&假设\\ &(4)P(x_0)\to Q(x_0)&&\forall x \ e_1\\ &(5)Q(x_0)&&\to e_{3,4}\\ &(6)\exist x \ Q(x)&&\exist x \ i_5\\ &(7)\exist x \ Q(x)&&\exist x \ e_{2,3-6}\\ \end{aligned} (1)x(P(x)Q(x))(2)x P(x)(3)P(x0)(4)P(x0)Q(x0)(5)Q(x0)(6)x Q(x)(7)x Q(x)x e1e3,4x i5x e2,36
  • 例题五:
    • 证明: ∀ x ( Q ( x ) → R ( x ) ) , ∃ x ( P ( x ) ∧ Q ( x ) ) ⊢ ∃ x ( P ( x ) ∧ R ( x ) ) \forall x(Q(x)\to R(x)),\exist x (P(x)\wedge Q(x)) \vdash \exist x (P(x)\wedge R(x)) x(Q(x)R(x)),x(P(x)Q(x))x(P(x)R(x))
    • 答案:
      ( 1 ) ∀ x ( Q ( x ) → R ( x ) ) 前 提 ( 2 ) ∃ x ( P ( x ) ∧ Q ( x ) ) 前 提 ( 3 ) P ( x 0 ) ∧ Q ( x 0 ) 假 设 ( 4 ) Q ( x 0 ) → R ( x 0 ) ∀ x   e 1 ( 5 ) Q ( x 0 ) ∧ e 2 , 3 ( 6 ) R ( x 0 ) → e 4 , 5 ( 7 ) P ( x 0 ) ∧ e 1 , 3 ( 8 ) P ( x 0 ) ∧ R ( x 0 ) ∧ i 7 , 6 ( 9 ) ∃ x ( P ( x ) ∧ R ( x ) ) ∃ x   i 8 ( 10 ) ∃ x ( P ( x ) ∧ R ( x ) ) ∃ x   e 2 , 3 − 9 \begin{aligned} &(1)\forall x (Q(x)\to R(x))&&前提\\ &(2)\exist x (P(x)\wedge Q(x))&&前提\\ &(3)P(x_0)\wedge Q(x_0)&&假设\\ &(4)Q(x_0)\to R(x_0)&&\forall x \ e_{1}\\ &(5)Q(x_0)&&\wedge e_{2,3}\\ &(6)R(x_0)&&\to e_{4,5}\\ &(7)P(x_0)&&\wedge e_{1,3}\\ &(8)P(x_0)\wedge R(x_0)&&\wedge i_{7,6}\\ &(9) \exist x (P(x)\wedge R(x))&&\exist x \ i_8\\ &(10) \exist x (P(x)\wedge R(x))&&\exist x \ e_{2,3-9}\\ \end{aligned} (1)x(Q(x)R(x))(2)x(P(x)Q(x))(3)P(x0)Q(x0)(4)Q(x0)R(x0)(5)Q(x0)(6)R(x0)(7)P(x0)(8)P(x0)R(x0)(9)x(P(x)R(x))(10)x(P(x)R(x))x e1e2,3e4,5e1,3i7,6x i8x e2,39
  • 例题六:
    • 证明: ∃ x   P ( x ) , ∀ x ∀ y ( P ( x ) → Q ( x ) ) ⊢ ∀ y   Q ( y ) \exist x \ P(x),\forall x \forall y(P(x)\to Q(x))\vdash \forall y \ Q(y) x P(x),xy(P(x)Q(x))y Q(y)
    • 答案:
      ( 1 ) ∃ x P ( x ) 前 提 ( 2 ) ∀ x ∀ y ( P ( x ) → Q ( x ) ) 前 提 ( 3 ) P ( x 0 ) 假 设 ( 4 ) ∀ y ( P ( x 0 ) → Q ( y ) ) ∀ x   e 2 ( 5 ) P ( x 0 ) → Q ( y 0 ) ∀ y   e 4 ( 6 ) Q ( y 0 ) → e 5 , 3 ( 7 ) Q ( y 0 ) ∃ x   e 1 , 3 − 6 ( 8 ) ∀ y   Q ( y ) ∀ y   i 3 − 7 \begin{aligned} &(1)\exist x P(x)&&前提\\ &(2)\forall x \forall y (P(x)\to Q(x))&&前提\\ &(3)P(x_0)&&假设\\ &(4)\forall y (P(x_0)\to Q(y))&&\forall x \ e_{2}\\ &(5)P(x_0)\to Q(y_0)&&\forall y \ e_{4}\\ &(6)Q(y_0)&&\to e_{5,3}\\ &(7)Q(y_0)&&\exist x \ e_{1,3-6}\\ &(8) \forall y \ Q(y)&&\forall y \ i_{3-7}\\ \end{aligned} (1)xP(x)(2)xy(P(x)Q(x))(3)P(x0)(4)y(P(x0)Q(y))(5)P(x0)Q(y0)(6)Q(y0)(7)Q(y0)(8)y Q(y)x e2y e4e5,3x e1,36y i37
  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

print_Hyon

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值