机器学习(四)决策树回顾总结

一、决策树

一般的,一颗决策树包含一个根节点、若干个内部节点和若干个叶节点;叶结点对应于决策结果,其他结点则对应于一个属性测试;
每个结点包含的样本集合根据属性测试的结果被划分到子节点中;根节点包含了样本全集; 
(根节点就是开始,内部节点代表了不同的属性,叶节点代表决策结果。)

决策树学习的目的是为了产生一颗泛化能力强,即处理未知实示例能力强的决策树。

二、划分选择

决策树学习的关键在于:如何选择最优的划分属性,也就是说这么多属性,怎么去分配节点位置,随着划分过程的不断进行,我们希望决策树的
分支节点所包含的样本尽可能属于同一类别。也就是说 “越纯” 越好,这样大家都是一条船上的蚂蚱。

三、信息增益 — ID3 决策树

增益增益准则对可取数目较多的属性有所偏好。 ID3决策树学习算法 就是以信息增益为准则来选择划分属性。

信息熵

信息熵 (information entropy)是度量样本集合纯度最常用的一种指标;熵越小,纯度越高。信息量越少

E n t ( D ) = − ∑ K = 1 ∣ y ∣ P k log ⁡ 2 P k , Ent(D) = -\sum_{K=1}^{|y|}P_{k} \log_{2}{P_{k} } , Ent(D)=K=1yPklog2Pk

其中, P k P_{k} Pk 代表样本集 D D D 中第 k k k 类样本所占的比例, k = 1 , 2 , 3 , . . . . . ∣ y ∣ k=1,2,3,.....|y| k=1,2,3,.....y E n t ( D ) Ent(D) Ent(D) 代表样本集合 D D D 的信息熵。

我们都知道样本越多的分支节点对于决策树的影响越大,所以我们可以计算出用属性 a 对样本集 D 进行划分所获得的 信息增益

在这里插入图片描述
西瓜书中的例子,看完计算过程也就知道该怎么去选择节点。
在这里插入图片描述

因为属性“纹理”的信息增益最大,所以选他作为化分属性。

四、增益率 — C4.5 决策树

增益率准则对可取数目较少的属性有所偏好。C4.5 决策树算法不直接使用信息增益,而是使用“增益率”来选择最优划分属性。

在这里插入图片描述

在这里插入图片描述

五、基尼指数 — CART 决策树

基尼指数越小,代表越纯。 CART决策树 使用“基尼指数”来选择划分属性。

在这里插入图片描述

六、剪枝处理

剪枝是决策树学习算法应对 “过拟合”的主要手段。

(1)预剪枝

预剪枝:在决策树生成过程中,对每个结点划分前先进性评估,若当前结点不能带来决策树的泛化应能提升,则停止划分当前节点
并标记为叶节点(直接给结果)。

预剪枝的优缺点

优点:预剪枝因为使得决策树的很多分支没有“展开”,这不仅降低了过拟合的风险,还显著减小了决策树训练时间开销和测试时间开销。

缺点:但是,有些分支在当前划分虽然不能提升泛化性能,甚至可能导致性能下降,但在其基础上再次进行划分有可能使泛化性能显著提高。

“贪心”带来了欠拟合的风险。  

(2)后剪枝

后剪枝:先从训练集合中生成一颗完整的决策树,然后从下往上对非叶结点考察,若将该结点对应的子树替换为叶结点能够提高泛化性能,
则将该子树替换为叶结点。

后剪枝的优缺点

优点:后剪枝通常比预剪枝保留更多的分支,所以在一般情况下,后剪枝欠拟合风险很小,泛化性能优于预剪枝。

缺点:但是,后剪枝在生成决策树后进行的,自下而上对所有非叶结点逐一考察,因此训练时间开销过大。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值