matlab三个简单物理建模实例(笔记)

〔实例 1.1〕试对空气中在重力作用下不同质量物体的下落过程进行建模和仿真。已知重力加速度 g = 9.8m/s 2 ,在初始时刻 t 0 = 0s 时物体由静止开始坠落。空气对落体的影响可以忽略不计。
g=9.8;  % 重力加速度
v=0;    % 设定初始速度条件
s=0;    % 设定初始位移条件
t=0;    % 设定起始时间
dt=0.1; % 设置计算步长
N=20;   % 设置仿真递推次数. 仿真时间等于N与dt的乘积
for k=1:N
  v=v+g*dt;                 % 计算新时刻的速度
  s(k+1)=s(k)+v*dt;         % 新位移
  t(k+1)=t(k)+dt;           % 时间更新
end
% 理论计算, 以便与仿真结果对照
t_theory=0:0.01:N*dt;       % 设置解析计算的时间点
v_theory=g*t_theory;        % 解析计算的瞬时速度
s_theory=1/2*g*t_theory.^2; % 解析计算的瞬时位移
% 作图: 仿真结果与解析结果对比
t=0:dt:N*dt;
plot(t,s,'o', t_theory,s_theory, '-');
xlabel('时间 t'); ylabel('位移 s');
legend('仿真结果','理论结果');

〔实例 1.2〕对乒乓球的弹跳过程进行仿真。忽略空气对球的影响,乒乓球垂直下落,落点为光滑的水平面,乒乓球接触落点立即反弹。如果不考虑弹跳中的能量损耗,则反弹前后的瞬时速率不变,但方向相反。如果考虑撞击损耗,则反弹速率有所降低。我们希望通过仿真得出乒乓球位移随时间变化的关系曲线,并进行弹跳过程的「实时」动画显示。
g=9.8;      % 重力加速度
v0=0;       % 初始速度
y0=1;       % 初始位置
m=1;        % 小球质量
t0=0;       % 起始时间
K=0.85;     % 弹跳的损耗系数
N=5000;     % 仿真的总步进数
dt=0.005;   % 仿真步长
v=v0;       % 初状态
y=y0; 
vx=2;       % 水平速度
x =0;       % 水平方向的初始位置
for k=1:N 
    if y >0     % 小球在空中的动力方程计算
        v =v -g*dt;
        y =y +v*dt;
    else        % 碰击瞬间的计算
        y =-K.*v*dt;  
        v =-K.*v-g*dt;   
    end 
    x = x + vx*dt;
    hold on
    plot(x,y,'o'); 
    axis([-2 10 0 1]);               % 坐标范围固定
    set(gcf,'DoubleBuffer','on');   % 双缓冲避免作图闪烁
    drawnow;
end

〔实例 1.3〕试用蒙特卡罗方法求出半径为1的圆的面积。并与理论值对比。
sita=0:0.01:2*pi;
x=sin(sita);
y=cos(sita);% 计算半径为1的圆周上的点,以便作出圆周观察
m=0;        % 在圆内在落点计数器
x1=2*rand(1000,1)-1;% 产生均匀分布于[-1, +1]直接的两个独立随机数x1,y1
y1=2*rand(1000,1)-1;
N=1000;     % 设置试验次数
for n=1:N   % 循环进行重复试验并统计
    p1=x1(1:n);
    q1=y1(1:n);
    if (x1(n)*x1(n)+y1(n)*y1(n))<1  % 计算落点到坐标原点的距离,判别落点是否在圆内
        m=m+1;                      % 如果落入圆中,计数器加1
    end
    plot(p1,q1,'.',x,y,'-k',[-1 -1 1 1 -1],[-1 1 1 -1 -1],'-k');
    axis equal;         % 坐标纵横比例相同
    axis([-2 2 -2 2]);  % 固定坐标范围
    text(-1,-1.2,['试验总次数 n=',num2str(n)]);% 显示试验结果
    text(-1,-1.4,['落入圆中数 m=',num2str(m)]);
    text(-1,-1.6,['近似圆面积 S_c=',num2str(m/n*4)]);
    set(gcf,'DoubleBuffer','on');      % 双缓冲避免作图闪烁
    drawnow;                           % 显示结果
end

参考书籍:Matlab/Simulink通信系统建模与仿真实例分析 编著:邵书斌

下面我将为您介绍一个MATLAB数据建模实例。 假设我们有一组数据,其中包含了汽车的速度和油耗数据。我们希望基于这些数据建立一个模型,可以预测在不同速度下汽车的油耗。这个问题可以被视为一个回归问题,我们可以使用MATLAB中的回归工具箱进行建模。 首先,我们需要准备数据。我们可以使用MATLAB内置的汽车数据集来进行演示。代码如下: ```matlab load carsmall; % 载入汽车数据集 ``` 接着,我们可以将数据集分为训练集和测试集。我们可以使用80%的数据作为训练集,剩余20%的数据作为测试集。代码如下: ```matlab trainRatio = 0.8; % 训练集比例 idx = randperm(size(MPG, 1)); % 随机排序 trainingSize = floor(trainRatio * size(MPG, 1)); % 训练集大小 trainingIdx = idx(1:trainingSize); % 训练集索引 testIdx = idx(trainingSize+1:end); % 测试集索引 trainingData = [Speed(trainingIdx), MPG(trainingIdx)]; testData = [Speed(testIdx), MPG(testIdx)]; ``` 接下来,我们可以使用回归工具箱中的fitlm函数来建立线性回归模型。代码如下: ```matlab lm = fitlm(trainingData(:,1), trainingData(:,2), 'linear'); ``` 我们可以使用plot函数将模型和数据可视化。代码如下: ```matlab plot(trainingData(:,1), trainingData(:,2), 'o'); hold on; plot(sort(trainingData(:,1)), lm.predict(sort(trainingData(:,1))), '-'); legend('Data', 'Linear Model'); xlabel('Speed'); ylabel('MPG'); ``` 最后,我们可以使用测试集来评估模型的性能。我们可以使用MATLAB内置的评估指标函数来计算模型的均方误差(MSE)和决定系数(R²)。代码如下: ```matlab MSE = mean((testData(:,2) - lm.predict(testData(:,1))).^2); R2 = corr(testData(:,2), lm.predict(testData(:,1)))^2; disp(['MSE: ', num2str(MSE)]); disp(['R²: ', num2str(R2)]); ``` 通过上述步骤,我们完成了一个简单MATLAB数据建模实例。您可以根据自己的数据和问题需求,调整建模方法和参数,得到更好的结果。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值