【动手学深度学习v2】循环神经网络-4&5RNN与RNN的实现

本文介绍了循环神经网络(RNN)的基础知识,包括其结构、参数初始化、预测、训练过程和梯度裁减。RNN在处理序列数据如语言模型时,通过隐藏状态传递历史信息。通过训练一个简单的RNN模型,展示了如何使用PyTorch实现和优化RNN,以降低困惑度并提高预测效果。此外,还对比了随机采样和顺序分区两种训练策略的差异,并讨论了框架内RNN的简洁实现。
摘要由CSDN通过智能技术生成

上一篇:【动手学习深度学习v2】循环神经网络-3.语言模型

4 循环神经网络

潜变量自回归模型中,隐变量 h t h_t ht h t − 1 h_{t-1} ht1 x t − 1 x_{t-1} xt1有关, x t x_t xt h t h_t ht x t − 1 x_{t-1} xt1有关。

更新隐藏状态:
h t = ϕ ( W h h h t − 1 + W h x x t − 1 + b h ) h_t=\phi(W_{hh}h_{t-1}+W_{hx}x_{t-1}+b_h) ht=ϕ(Whhht1+Whxxt1+bh)
输出: o t = ϕ ( W h o h t + b o ) o_{t}=\phi(W_{ho}h_{t}+b_{o}) ot=ϕ(Whoht+bo)

ϕ \phi ϕ:激活函数
W h x W_{hx} Whx: 由 x t − 1 x_{t-1} xt1影响的隐藏层权重
W h h W_{hh} Whh: 由 h t − 1 h_{t-1} ht1影响的隐藏层权重
W t o W_{to} Wto: 由 h t h_{t} ht影响的隐藏层权重,影响 o t o_{t} ot

如果输入‘你’,更新隐变量预测‘好’字

困惑度

  • 衡量一个语言模型的好坏可以用平均交叉熵
    π = 1 n ∑ i = 1 n − log ⁡ p ( x t ∣ x t − 1 , . . . ) \pi = \frac{1}{n} \sum_{i=1}^n - \log p(x_t|x_{t-1},...) π=n1i=1nlogp(xtxt1,...)
    p是语言模型的预测概率, x t x_t xt是真实词
  • NLP使用困惑度 e x p ( π ) exp(\pi) exp(π)是平均每次可能选项
    • 1表示完美,无穷大最差,困惑度能够很好的体现误差

梯度裁减

  • 迭代中计算T个时间步上的梯度,在反向传播过程中产生长度为O(T)的矩阵乘法链,导致数值不稳定
  • 梯度裁减能有效预防梯度爆炸
    • 如果梯度长度超过 θ \theta θ,那么拖回到长度 θ \theta θ,使g长度永远不会超过 θ \theta θ
      g ← m i n ( 1 , θ ∣ ∣ g ∣ ∣ ) g g \leftarrow min(1,\frac{\theta}{||g||})g gmin(1,gθ)g

RNN的应用

5.循环神经网络的实现

!pip install d2l==0.14
%matplotlib inline
import math
import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l

# 批量大小,T时间步
batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)

5.1 独热编码

在train_iter中,每个词元都表示为一个数字索引, 将这些索引直接输入神经网络可能会使学习变得困难。 通常将每个词元表示为更具表现力的特征向量。 最简单的表示称为独热编码(one-hot encoding)

F.one_hot(torch.tensor([0, 2]), len(vocab))

将每个索引映射为相互不同的单位向量: 假设词表中不同词元的数目为N(即len(vocab)), 词元索引的范围为0到N-1。 如果词元的索引是整数i, 那么我们将创建一个长度为N的全0向量, 并将第处的元素设置为1。 此向量是原始词元的一个独热向量。 索引为0和2的独热向量如下所示:

tensor([[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
         0, 0, 0, 0],
        [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
         0, 0, 0, 0]])

我们每次采样的小批量数据形状是二维张量: (批量大小,时间步数)。 one_hot函数将这样一个小批量数据转换成三维张量, 张量的最后一个维度等于词表大小(len(vocab))。我们经常转换输入的维度,以便获得形状为 (时间步数,批量大小,词表大小)的输出。 这将使我们能够更方便地通过最外层的维度, 一步一步地更新小批量数据的隐状态。

5.2 初始化模型参数

def get_params(vocab_size, num_hiddens, device):
	'''num_hiddens: 隐藏单元数'''
    num_inputs = num_outputs = vocab_size

    # 初始化参数,使方差为0.01
    def normal(shape):
        return torch.randn(size=shape, device=device) * 0.01

    # 隐藏层参数
    W_xh = normal((num_inputs, num_hiddens))
    W_hh = normal((num_hiddens, num_hiddens))
    b_h = torch.zeros(num_hiddens, device=device)
    # 输出层参数
    W_hq = normal((num_hiddens, num_outputs))
    b_q = torch.zeros(num_outputs, device=device)
    # 附加梯度
    params = [W_xh, W_hh, b_h, W_hq, b_q]
    for param in params:
        param.requires_grad_(True)
    return params

5.3 循环神经网络模型

函数在初始化时返回隐状态。返回是一个张量,张量全用0填充, 形状为(批量大小,隐藏单元数)。

def init_rnn_state(batch_size, num_hiddens, device):
    return (torch.zeros((batch_size, num_hiddens), device=device), )


# 定义了如何在一个时间步内计算隐状态和输出
def rnn(inputs, state, params):
    # inputs的形状:(时间步数量,批量大小,词表大小)
    W_xh, W_hh, b_h, W_hq, b_q = params
    H, = state
    outputs = []
    # X的形状:(批量大小,词表大小)
    for X in inputs:
    	# 激活函数tanh
        H = torch.tanh(torch.mm(X, W_xh) + torch.mm(H, W_hh) + b_h)
        Y = torch.mm(H, W_hq) + b_q
        outputs.append(Y)
    return torch.cat(outputs, dim=0), (H,)


class RNNModelScratch: 
    """从零开始实现的循环神经网络模型"""
    def __init__(self, vocab_size, num_hiddens, device,
                 get_params, init_state, forward_fn):
        self.vocab_size, self.num_hiddens = vocab_size, num_hiddens
        self.params = get_params(vocab_size, num_hiddens, device)
        self.init_state, self.forward_fn = init_state, forward_fn

    def __call__(self, X, state):
        X = F.one_hot(X.T, self.vocab_size).type(torch.float32)
        return self.forward_fn(X, state, self.params)

    def begin_state(self, batch_size, device):
        return self.init_state(batch_size, self.num_hiddens, device)

检查输出是否具有正确的形状。

num_hiddens = 512
net = RNNModelScratch(len(vocab), num_hiddens, d2l.try_gpu(), get_params,
                      init_rnn_state, rnn)
state = net.begin_state(X.shape[0], d2l.try_gpu())
Y, new_state = net(X.to(d2l.try_gpu()), state)
Y.shape, len(new_state), new_state[0].shape
(torch.Size([10, 28]), 1, torch.Size([2, 512]))

5.4 预测

首先定义预测函数来生成prefix之后的新字符, 其中的prefix是一个用户提供的包含多个字符的字符串。 在循环遍历prefix中的开始字符时, 我们不断地将隐状态传递到下一个时间步,但是不生成任何输出。 这被称为预热(warm-up)期, 因为在此期间模型会自我更新(例如,更新隐状态), 但不会进行预测。 预热期结束后,隐状态的值通常比刚开始的初始值更适合预测, 从而预测字符并输出它们。

def predict_ch8(prefix, num_preds, net, vocab, device):  #@save
    """在prefix后面生成新字符"""
    state = net.begin_state(batch_size=1, device=device)
    outputs = [vocab[prefix[0]]]
    get_input = lambda: torch.tensor([outputs[-1]], device=device).reshape((1, 1))
    for y in prefix[1:]:  # 预热期
        _, state = net(get_input(), state)
        outputs.append(vocab[y])
    for _ in range(num_preds):  # 预测num_preds步
        y, state = net(get_input(), state)
        outputs.append(int(y.argmax(dim=1).reshape(1)))
    return ''.join([vocab.idx_to_token[i] for i in outputs])

predict_ch8('time traveller ', 10, net, vocab, d2l.try_gpu())

5.5 梯度裁减

在RNN中给一个小批量数据进入网络,而不是一个单层隐藏层,而是做T步迭代,T为num_steps,代码设为35,可以看做35个矩阵乘法,因此容易引起梯度爆炸。

def grad_clipping(net, theta): 
    """裁剪梯度"""
    if isinstance(net, nn.Module):
    	# 把网络中参数需要梯度的全部拿出来
        params = [p for p in net.parameters() if p.requires_grad]
    else:
        params = net.params
    
    # 把所有层里面的p里的梯度取平方再求和,然后将计算出来的结果对所有层求和,最后开根号
    norm = torch.sqrt(sum(torch.sum((p.grad ** 2)) for p in params))

	# 如果norm大于theta,将所有梯度*=theta/norm,使所有梯度concat后计算所得的norm等于theta
	# 当梯度特别大时,为了防止梯度在之后的训练中迅速增加,将梯度限制在theta内,保证模型不发散
    if norm > theta:
        for param in params:
            param.grad[:] *= theta / norm

5.6 训练

从零开始编写循环神经网络训练函数

序列数据的不同采样方法(随机采样和顺序分区)将导致隐状态初始化的差异。

当使用顺序分区时, 我们只在每个迭代周期的开始位置初始化隐状态。 由于下一个小批量数据中的第个i子序列样本与当前第i个子序列样本相邻, 因此当前小批量数据最后一个样本的隐状态, 将用于初始化下一个小批量数据第一个样本的隐状态。 这样,存储在隐状态中的序列的历史信息 可以在一个迭代周期内流经相邻的子序列。 然而,在任何一点隐状态的计算, 都依赖于同一迭代周期中前面所有的小批量数据, 这使得梯度计算变得复杂。 为了降低计算量,在处理任何一个小批量数据之前, 我们先分离梯度,使得隐状态的梯度计算总是限制在一个小批量数据的时间步内。

当使用随机抽样时,因为每个样本都是在一个随机位置抽样的, 因此需要为每个迭代周期重新初始化隐状态。

def train_epoch_ch8(net, train_iter, loss, updater, device, use_random_iter):
    """训练网络一个迭代周期(定义见第8章)"""
    state, timer = None, d2l.Timer()
    metric = d2l.Accumulator(2)  # 训练损失之和,词元数量
    for X, Y in train_iter:
    	# 如果随机采样或state为空
        if state is None or use_random_iter:
            # 在第一次迭代或使用随机抽样时初始化state,隐藏状态初始化
            # 如果use_random_iter为True,当前sequence与上一个sequence不是连续的,所以上一个state不应该用在当前时刻,因此每换一个batch都要重置state(即“状态”)
            state = net.begin_state(batch_size=X.shape[0], device=device)
        else:            # 如果顺序分区,只在每个迭代周期的开始位置初始化隐状态
            if isinstance(net, nn.Module) and not isinstance(state, tuple):
                # state对于nn.GRU是个张量,detach不修改state里的值
                state.detach_()
            else:
                # state对于nn.LSTM或对于我们从零开始实现的模型是个张量
                for s in state:
                    s.detach_()
                
        # 把时间信息拉到前面
        y = Y.T.reshape(-1)
        X, y = X.to(device), y.to(device)  # 放到GPU
        y_hat, state = net(X, state)       # 前向传播
        # 为什么将所有输出在第一个维度concat,因为从loss角度看,可以看成一个多分类问题
        l = loss(y_hat, y.long()).mean()
        # 反向传播
        # 如果使用pytorch框架中默认的优化器
        if isinstance(updater, torch.optim.Optimizer):
            updater.zero_grad()
            l.backward()
            grad_clipping(net, 1)     # 梯度剪裁,theta为1
            updater.step()            # 更新参数权重
        # 否则使用d2l.sgd优化器
        else:
            l.backward()
            grad_clipping(net, 1)
            # 因为已经调用了mean函数
            updater(batch_size=1)
        metric.add(l * y.numel(), y.numel())
    # 使用困惑度来评价模型
    return math.exp(metric[0] / metric[1]), metric[1] / timer.stop()
def train_ch8(net, train_iter, vocab, lr, num_epochs, device,
              use_random_iter=False):
    """训练模型"""
    # 使用交叉熵损失函数
    loss = nn.CrossEntropyLoss()
    # 画图
    animator = d2l.Animator(xlabel='epoch', ylabel='perplexity',legend=['train'], xlim=[10, num_epochs])
    # 初始化
    if isinstance(net, nn.Module):   # 如果使用pytorch框架中的优化器
        updater = torch.optim.SGD(net.parameters(), lr)
    else:                            # 用沐神前面写的优化器
        updater = lambda batch_size: d2l.sgd(net.params, lr, batch_size)
    predict = lambda prefix: predict_ch8(prefix, 50, net, vocab, device)
    # 训练和预测
    for epoch in range(num_epochs):
        ppl, speed = train_epoch_ch8(
            net, train_iter, loss, updater, device, use_random_iter)
        if (epoch + 1) % 10 == 0:  # 每个epoch输出一次预测的结果
            print(predict('time traveller'))
            animator.add(epoch + 1, [ppl])
    print(f'困惑度 {ppl:.1f}, {speed:.1f} 词元/秒 {str(device)}')
    print(predict('time traveller'))
    print(predict('traveller'))

开始训练

num_epochs, lr = 500, 1
train_ch8(net, train_iter, vocab, lr, num_epochs, d2l.try_gpu())
困惑度 1.0, 76623.6 词元/秒 cuda:0
time travelleryou can show black is white by argument said filby
travelleryou can show black is white by argument said filby

使用随机采样训练

net = RNNModelScratch(len(vocab), num_hiddens, d2l.try_gpu(), get_params,
                      init_rnn_state, rnn)
train_ch8(net, train_iter, vocab, lr, num_epochs, d2l.try_gpu(),
          use_random_iter=True)
困惑度 1.5, 67705.0 词元/秒 cuda:0
time travellerit s against reason said filby of course a solid b
travelleryou can show black is white by argument said filby

5.7 RNN的简洁实现

import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l

batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)

# 构造一个具有256个隐藏单元的单隐藏层的循环神经网络层
num_hiddens = 256
rnn_layer = nn.RNN(len(vocab), num_hiddens)

class RNNModel(nn.Module):
    """循环神经网络模型"""
    def __init__(self, rnn_layer, vocab_size, **kwargs):
        super(RNNModel, self).__init__(**kwargs)
        self.rnn = rnn_layer
        self.vocab_size = vocab_size
        self.num_hiddens = self.rnn.hidden_size
        # 如果RNN是双向的(之后将介绍),num_directions应该是2,否则应该是1
        if not self.rnn.bidirectional:
            self.num_directions = 1
            self.linear = nn.Linear(self.num_hiddens, self.vocab_size)
        else:
            self.num_directions = 2
            self.linear = nn.Linear(self.num_hiddens * 2, self.vocab_size)

    def forward(self, inputs, state):
        X = F.one_hot(inputs.T.long(), self.vocab_size)
        X = X.to(torch.float32)
        Y, state = self.rnn(X, state)
        # 全连接层首先将Y的形状改为(时间步数*批量大小,隐藏单元数)
        # 它的输出形状是(时间步数*批量大小,词表大小)。
        output = self.linear(Y.reshape((-1, Y.shape[-1])))
        return output, state

    def begin_state(self, device, batch_size=1):
        if not isinstance(self.rnn, nn.LSTM):
            # nn.GRU以张量作为隐状态
            return  torch.zeros((self.num_directions * self.rnn.num_layers,
                                 batch_size, self.num_hiddens),
                                device=device)
        else:
            # nn.LSTM以元组作为隐状态
            return (torch.zeros((
                self.num_directions * self.rnn.num_layers,
                batch_size, self.num_hiddens), device=device),
                    torch.zeros((
                        self.num_directions * self.rnn.num_layers,
                        batch_size, self.num_hiddens), device=device))

num_epochs, lr = 500, 1
d2l.train_ch8(net, train_iter, vocab, lr, num_epochs, device)
perplexity 1.2, 148888.0 tokens/sec on gpu(0)
time traveller held in his hand was a glitteringmetallic framewo
travelleryou can show black andeed and animated thefire bur

由于深度学习框架的高级API对代码进行了更多的优化, 该模型在较短的时间内达到了较低的困惑度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值