题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5512
#include<bits/stdc++.h>
#pragma comment(linker,"/STACK:1024000000,1024000000")
using namespace std;
#define debug puts("YES");
#define rep(x,y,z) for(int (x)=(y);(x)<(z);(x)++)
#define read(x,y) scanf("%d%d",&x,&y)
#define lrt int l,int r,int rt
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define ll long long
const int maxn =2e6+5;
const int mod=1e9+7;
ll powmod(ll x,ll y) {ll t;for(t=1;y;y>>=1,x=x*x%mod) if(y&1) t=t*x%mod;return t;}
ll gcd(ll x,ll y) { return y==0?x:gcd(y,x%y); }
/*
题目大意:两个人博弈,
可以产生存在的数字集合中的两个数的
和和差,判断输赢。
掌握gcd的性质即可,
给定两个数这样扩展下去,
不难发现最后就是gcd(a,b)的倍数全部被填充。
那么只要看看倍数简单处理即可。
*/
int n,a,b;
int main()
{
int t;scanf("%d",&t);
for(int ca=1;ca<=t;ca++)
{
scanf("%d%d%d",&n,&a,&b);
n/=gcd(a,b);
printf("Case #%d: ",ca);
if(n&1) puts("Yuwgna");
else puts("Iaka");
}
return 0;
}