AI教程 | FLUX.1 模型入门教程

FLUX.1 模型的发布迅速走红全球,生成的图像质量超越了现有的开源模型,且支持通过简单操作进行微调,无需编程知识。Replicate 上已有数百个公开的 Flux 微调,还有数千个私有微调。

Flux 的一大亮点是能够微调面部图像,这是以前的开源模型(如 Stable Diffusion 或 SDXL)难以实现的功能。自 Dreambooth 以来,能够通过少量训练图像获得出色结果的微调方式再也没有如此简单。

本文将详细介绍如何在 Replicate 平台上使用自己的照片微调 FLUX.1 训练一个图像模型,生成各种风格的图片,如超级英雄、卡通角色或冒险者形象等。

关键步骤包括:
  1. 准备训练图片:至少10张不同角度和光线条件下的高质量面部照片。
  2. 选择触发词:创建一个唯一的“触发词”用于激活模型。
  3. 创建并训练模型:在 Replicate 上上传图片和触发词,训练大约需要 20 分钟。
  4. 生成图像:使用训练后的模型生成带有触发词的详细描述文本。
alt

步骤 0: 准备工作

在开始微调 FLUX.1 模型之前,你需要准备:

  • 一个 Replicate 账户
  • 几张自己的照片
  • 2-3 美元的模型训练费用

步骤 1: 收集训练图片

你需要收集几张自己的照片,推荐至少 10 张高质量面部照片,但最少需要 2 张。

图片要求:

  • 格式:WebP、JPG、PNG
  • 分辨率: 1024×1024 或更高
  • 文件名:随意命名,不影响训练
  • 建议最少 10 张,图片越多效果越好
  • 图片多样化:不同背景、服装、灯光和角度

准备步骤:

  1. 将图片存放在一个文件夹中,如 data
  2. 将文件夹压缩为 .zip 文件,命名为 data.zip
alt

步骤 2: 选择唯一的触发词

微调 FLUX.1 模型时,需要选择一个唯一的触发词,后续生成图像时将使用它。

触发词要求:

  • 独特,类似于 MY_UNIQ_TRGGR
  • 不应是现有的语言词汇,如 dogcyberpunk
  • 不使用 TOK,以避免与其他微调冲突

例如,作者选择了 ZIKI 作为触发词。你可以根据个人喜好选择一个类似的唯一词。


步骤 3: 创建并训练模型

接下来,你将在 Replicate 平台上上传图片并开始训练。

网页训练步骤:

  1. 访问 Flux 微调表单
  2. 选择模型发布位置:可以选择发布为公共或私有。
  3. 上传训练图片:在 input_images 字段中,上传 data.zip 文件。
  4. 输入触发词:在 trigger_word 字段中,输入之前选择的触发词。
  5. 选择训练步数:默认1000步,建议不要低于此步数。
  6. 点击 Create training 开始训练。
alt

步骤 4: 等待训练完成

训练大约需要 20 分钟。在这期间,你可以休息片刻,等返回时模型就准备好了。


步骤 5: 使用网页生成图像

训练完成后,你可以通过网页表单生成图像:

  1. 访问 Replicate 平台 的 web playground。

  2. 输入提示语,包括之前设置的触发词,例如:

    "photo of ZIKI looking super-cool, riding a segway scooter"

FLUX 模型适合详细提示语,尽可能多描述。

alt

本文由 mdnice 多平台发布

### 关于 Flux 和 LoRA 技术的零基础入门教程 #### 了解基础知识 对于想要学习如何使用 Flux 和 LoRA 进行图像生成和模型微调的新手来说,理解这些工具的基础概念至关重要。Flux 是一种用于加速 AI 计算的工作站解决方案,而 LoRA (Low-Rank Adaptation) 则是一种高效的参数高效迁移学习方法。 #### 安装环境准备 为了能够顺利运行 Flux 和 LoRA 模型,在本地计算机上安装必要的软件包是第一步。通常情况下,推荐使用 Python 虚拟环境来管理依赖项,并通过 pip 工具安装 PyTorch 及其扩展库 torchvision 等必要组件[^1]。 ```bash conda create -n flux_lora python=3.9 conda activate flux_lora pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu117 ``` #### 获取并配置预训练模型 获取已经预先训练好的 Flux 基础模型以及特定风格的 LoRA 插件非常重要。例如提到的老徐带来的这款人物 LoRA 就是一个很好的例子,它是在 Flux dev 模型基础上利用 SimpleTuner 训练得到的人像增强模块。可以通过 GitHub 或者其他开源平台下载对应的 `.safetensors` 文件。 #### 使用 Colab 平台简化流程 考虑到个人电脑可能不具备足够的 GPU 性能来进行长时间的任务处理,可以考虑借助 Google Colab 提供的强大云端计算资源。只需上传所需的数据集与模型文件至云盘空间内,再按照官方文档指引编写简单的 Jupyter Notebook 即可完成整个过程设置[^4]。 #### 微调模型适应新需求 当拥有了一定数量高质量图片作为样本之后,就可以尝试调整现有网络结构使之更好地满足个性化创作目的了。这里涉及到超参的选择如批次大小、迭代次数等;同时也需注意选择合适的损失函数指导优化方向。上述案例中的角色形象定制就是这样一个典型应用场景——让原本欧美特征明显的虚拟人设变得更加贴近东方审美标准而不失真实感[^2]。 #### 注意事项 最后值得注意的一点在于不同版本间可能存在兼容性差异,因此建议严格按照开发者给出的操作指南执行每一步骤操作。特别是有关于权重精度方面的要求,比如某些特殊变体仅支持 FP8 或 FP16 格式的输入数据格式转换等问题都需要提前做好功课加以解决[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小胡的第二大脑

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值