Langevin dynamic 和 Hamiltonian Monte Carlo

本文探讨了在Bayesian inference中,Langevin动态和Hamiltonian Monte Carlo作为高级抽样方法的角色。Langevin动态通过小实验展示了噪声尺度对分布的影响,而HMC通过Tianqi Chen的文章展示了如何结合连续化SDE和Langevin动态以优化采样效率。文章提出了连续化SDE中的噪声方差和离散化问题,并讨论了其合理性。
摘要由CSDN通过智能技术生成

开这个坑慢慢写吧…

Langevin dynamic 和 Hamiltonian Monte Carlo

众所周知,sampling在Bayeisan中十分重要。比较高级的方法之一就是基于随机微分方程的抽样,例如这里的Langevin和HMC(Hamiltonian Monte Carlo)。

Langevin dynamic

下面是一个目标分布是标准正态分布的Langevin算法的小实验。分别是运行长度为100000、长度为1000000、更改噪声尺度 得到的结果:

  • langevin的理论中,步长满足一定条件下,离散化导致的误差被加入的随机噪声掩盖,后期MH拒绝可能性yanhua会很低,几乎可忽略。
  • 此类算法要求的计算量很不小。在分布容易模拟的情况下千万不要用。
  • 增加噪声的尺度会直接影响最后的分布更加不集中。课件噪声在这个过程中起到很重要的作用。

Hamiltonian Monte Carlo

HMC领域一个重要的文章是Tianqi Chen大佬写的那篇Stochastic Gradient Hamiltonian Monte Carlo。

相比于引入摩擦这个概念,我觉得作者在离散化和SDE间的转换更有意思。固定了步长 ϵ \epsilon ϵ后,导致的误差本来是 O ( ϵ 2 ) O(\epsilon^2)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值