开这个坑慢慢写吧…
Langevin dynamic 和 Hamiltonian Monte Carlo
众所周知,sampling在Bayeisan中十分重要。比较高级的方法之一就是基于随机微分方程的抽样,例如这里的Langevin和HMC(Hamiltonian Monte Carlo)。
Langevin dynamic
下面是一个目标分布是标准正态分布的Langevin算法的小实验。分别是运行长度为100000、长度为1000000、更改噪声尺度 得到的结果:
- langevin的理论中,步长满足一定条件下,离散化导致的误差被加入的随机噪声掩盖,后期MH拒绝可能性yanhua会很低,几乎可忽略。
- 此类算法要求的计算量很不小。在分布容易模拟的情况下千万不要用。
- 增加噪声的尺度会直接影响最后的分布更加不集中。课件噪声在这个过程中起到很重要的作用。
Hamiltonian Monte Carlo
HMC领域一个重要的文章是Tianqi Chen大佬写的那篇Stochastic Gradient Hamiltonian Monte Carlo。
相比于引入摩擦这个概念,我觉得作者在离散化和SDE间的转换更有意思。固定了步长 ϵ \epsilon ϵ后,导致的误差本来是 O ( ϵ 2 ) O(\epsilon^2)