PyTorch学习笔记(一)深度学习框架简介、开发环境准备
课程Github资源来源于:https://github.com/dragen1860/Deep-Learning-with-PyTorch-Tutorials
PyTorch同类框架
PyTorch、TensorFlow主要区别:动态图优先还是静态图优先。
静态图: 定义公式–喂输入–得到输出。
PyTorch生态
自然语言:含有NLP、AllenNLP包。
视觉:含有TorchVision包。
图网络:含有PyTorch geometric、Fast.ai包。
快速部署:ONNX。
PyTorch可以做什么?
- GPU加速
print(torch.cuda.is_available())
device = torch.device(‘cuda’) - 自动求导 提供autograd.grad()函数自动求导.
- 提供常用的网络层:nn.Linear、nn.Conv2d、nn.LSTM 、nn.ReLU、nn.Sigmoid、nn.Softmax、nn.CrossEntropyLoss 、nn.MSE。堆叠神经网络结构
安装开发环境
- Python3.7 + Anaconda 5.3.1(第三方包管理工具)
- CUDA 10.0(NVIDIA显卡驱动)
- PyCharm Community(PythonIDE)
- 安装Anaconda,自带Python3.7。检验是否安装成功:cmd中输入:
conda list
;conda --version
- 安装CUDA,只能运行在NVIDIA显卡上,确保有NVIDIA显卡960、970、1050、1070。在Google中搜索:CUDA download,下载并安装。检验是否安装成功:默认安装列表在C盘>Program Files>NVIDIA GPU…>CUDA>v10.0>bin(有nvcc编译程序,是编译器,证明安装好了。) 在cmd中输入:
nvcc -V
出现版本号,则安装正确。若出现未找到,则说明环境变量没有配好:我的电脑 右键>属性>高级系统设置>环境变量>下面系统变量找到Path,右键编辑>确认有上述“C盘>Program Files>NVIDIA GPU…>CUDA>v10.0>bin”的路径。 - PyTorch安装。添加国内源–选择安装命令-显示源地址。PyTorch安装指令见:https://github.com/dragen1860/Deep-Learning-with-PyTorch-Tutorials的README.md。cmd验证:
ipython
,import torch
,torch.cuda.is_available()
返回True则可以在GPU上使用。 - 安装PyCharm。安装Community版本。创建Project:Create Project> 编译器选择:anaconda版本的编译器conda,选择conda下面python.exe。创建File:右键>如果
import torch
成功,且print(torch.__version__) print('gpu:', torch.cuda.is_available())
显示,则成功。