数值分析——第二章函数逼近:插值法

2.1常用的插值法

p ( x ) = a 0 + a 1 x + ⋯ + a n x n , p(x) = a_{0}+a_{1} x+ \cdots +a_{n}x^{n}, p(x)=a0+a1x++anxn,
其中 a i a_{i} ai为实数,则称 p ( x ) p(x) p(x)为插值多项式,相应的插值法称为多项式插值
p ( x ) p(x) p(x)为分段的多项式,则称之为分段多项式插值
p ( x ) p(x) p(x)为三角多项式,则称之为三角插值

定理1

满足插值条件 p ( x i ) = y i ( i = 0 , 1... , n ) p(x_{i})=y_{i}(i=0,1...,n) p(xi)=yi(i=0,1...,n)的n次插值多项式存在且唯一。(证明:系数矩阵为范德蒙行列式,从而非奇异,满秩,有唯一解)

2.2拉格朗日插值多项式

线性插值

L ( x ) L(x) Lx的几何直观,得:
两点式 L 1 = y k x − x k + 1 x k − x k + 1 + y k + 1 x − x k x k + 1 − x k L_{1}=y_{k}\frac{x-x_{k+1}}{x_{k}-x_{k+1}}+y_{k+1}\frac{x-x_{k}}{x_{k+1}-x_{k}} L1=ykxkxk+1xxk+1+yk+1xk+1xkxxk,
其中
l k = x − x k + 1 x k − x k + 1 , l k + 1 = x − x k x k + 1 − x k l_{k}=\frac{x-x_{k+1}}{x_{k}-x_{k+1}},l_{k+1}=\frac{x-x_{k}}{x_{k+1}-x_{k}} lk=xkxk+1xxk+1,lk+1=xk+1xkxxk
显然
l i ( x j ) = δ i j = { 1 ( i = j ) 0 ( i ≠ j ) ( i , j = k , k + 1 ) l_{i}(x_{j})=\delta _{ij}=\left\{\begin{matrix} 1(i = j)\\ 0(i \neq j) \end{matrix}\right.(i,j=k,k+1) li(xj)=δij={1(i=j)0(i=j)(i,j=k,k+1)
l k ( x ) 和 l k + 1 ( x ) 为 l_{k}(x)和l_{k+1}(x)为 lk(x)lk+1(x)线性插值基函数
在这里插入图片描述

抛物插值

从两个点引申到三个点
L 2 ( x ) = y k − 1 l k − 1 ( x ) + y k l k ( x ) + y k + 1 l k + 1 ( x ) L_{2}(x)=y_{k-1}l_{k-1}(x)+y_{k}l_{k}(x)+y_{k+1}l_{k+1}(x) L2(x)=yk1lk1(x)+yklk(x)+yk+1lk+1(x)
l i ( x j ) = δ i j = { 1 ( i = j ) 0 ( i ≠ j ) ( i , j = k − 1 , k , k + 1 ) l_{i}(x_{j})=\delta _{ij}=\left\{\begin{matrix} 1(i = j)\\ 0(i \neq j) \end{matrix}\right.(i,j=k-1,k,k+1) li(xj)=δij={1(i=j)0(i=j)(i,j=k1,k,k+1)
如果满足上述条件的 l i ( x ) l_{i}(x) li(x)存在,则上述公式就是二次插值函数。

怎么求 l i ( x ) l_{i}(x) li(x)

根据定义 l i ( x ) l_{i}(x) li(x)有两个零点,即 x k − 1 x_{k-1} xk1 x k + 1 x_{k+1} xk+1,且为二次多项式。因此,可令 l i ( x ) = A ( x − x k − 1 ) ( x − x k + 1 ) l_{i}(x)=A(x-x_{k-1})(x-x_{k+1}) li(x)=A(xxk1)(xxk+1)
所以现在问题变成如何求A?
又知 l i ( x k ) = 1 l_{i}(x_{k})=1 li(xk)=1,带入可求的A。
同理,可求 l k − 1 ( x ) , l k + 1 ( x ) l_{k-1}(x),l_{k+1}(x) lk1(x),lk+1(x).
在这里插入图片描述
前面看了一次插值(线性插值)和二次插值(抛物插值)的例子,我们想如果能把插值推广到n次插值,怎么样?

定义2.2

若n次多项式 l j ( x ) ( j = 0 , 1 , . . . , n ) l_{j}(x)(j=0,1,...,n) lj(x)(j=0,1,...,n)在n+1个节点 x 0 < x 1 < . . . < x n x_{0}<x_{1}<...<x_{n} x0<x1<...<xn上满足条件
l j ( x k ) = { 1 ( k = j ) 0 ( k ≠ j ) ( k , j = 0 , 1 , . . . , n ) l_{j}(x_{k})=\left\{\begin{matrix} 1(k= j)\\ 0(k \neq j) \end{matrix}\right.(k,j=0,1,...,n) lj(xk)={1(k=j)0(k=j)(k,j=0,1,...,n)

则称这n+1个多项式 l 0 ( x ) , l 1 ( x ) , . . . , l n ( x ) l_{0}(x),l_{1}(x),...,l_{n}(x) l0(x),l1(x),...,ln(x)为节点 x 0 , x 1 , . . , x n x_{0},x_{1},..,x_{n} x0,x1,..,xn上的n次插值基函数。
在这里插入图片描述

2.3拉格朗日插值余项

若 在 [ a , b ] 上 用 L n ( x ) 近 似 f ( x ) , 截 断 误 差 为 : 若在[a,b]上用L_{n}(x)近似f(x),截断误差为: [a,b]Ln(x)f(x), R n ( x ) = f ( x ) − L n ( x ) R_{n}(x)=f(x)-L_{n}(x) Rn(x)=f(x)Ln(x)也称插值多项式的余项或插值余项

由 R n ( x k ) = 0 ( k = 0 , 1 , . . . , n ) , 得 由R_{n}(x_{k})=0(k=0,1,...,n),得 Rn(xk)=0(k=0,1,...,n), R n ( x ) = K ( x ) ( x − x 0 ) ( x − x 1 ) . . . ( x − x n ) = K ( x ) ω n ( x ) R_{n}(x)=K(x)(x-x_{0})(x-x_{1})...(x-x_{n})=K(x)\omega _{n}(x) Rn(x)=K(x)(xx0)(xx1)...(xxn)=K(x)ωn(x)如何求 K ( x ) K(x) K(x)?
构造函数g(t)为:
g ( t ) = f ( t ) − L n ( t ) − K ( x ) ( t − x 0 ) ( t − x 1 ) . . . ( t − x n ) g(t) =f(t)-L_{n}(t)-K(x)(t-x_{0})(t-x_{1})...(t-x_{n}) g(t)=f(t)Ln(t)K(x)(tx0)(tx1)...(txn)
显然g(t)在[a,b]上至少存在n+2个零点
在这里插入图片描述
由上面可以总结出定理2.2

定理2.2

在这里插入图片描述

s u p ∣ f n + 1 ( x ) ∣ = M n + 1 的 意 思 为 f n + 1 ( x ) 的 上 界 为 M n + 1 sup\left | f^{n+1} (x)\right |=M_{n+1}的意思为 f^{n+1} (x)的上界为M_{n+1} supfn+1(x)=Mn+1fn+1(x)Mn+1
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

总结 内插优于外插,二次插值优于线性插值。

2.4差商及其性质

在这里插入图片描述
在这里插入图片描述

从而,引出了差商的概念

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.5 Newton插值多项式

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

牛顿插值的优势
  1. 计算复杂性大幅下降,(如添加一个点是,只需要添加一项,不需要全部重新算。)
  2. 误差估计对函数的光滑性没有任何要求。
    在这里插入图片描述
    在这里插入图片描述
2.6分段线性插值

为什么要引出分段线性插值?
因为
在这里插入图片描述
所以提出用分段线性插值来解决这个问题。
在这里插入图片描述
在这里插入图片描述
可以参考下面的几何图形,基函数在节点中为一或零,中间线性变化。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.7埃米尔Hermite插值

插值的更高要求,即插值点不仅过节点,而且相切(即一阶导数相同)。
以此类推,如果二阶导数相同,即凹凸性相同,那么拟合曲线和实际曲线更加接近,如果三阶,四阶,…,都相同,那么拟合效果就更好了。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
如何求 α i 和 β i \alpha_{i} 和\beta_{i} αiβi
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
遇到有倒数的,就想到用埃尔米特插值。

总结

在这里插入图片描述

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值