SSD
一、目标检测
1、基于手工特征的目标检测
2、基于深度学习的目标检测
1、基于区域提名的目标检测算法(two-stage):RCNN、fast-RCNN、faster-RCNN
区域提名,即针对图像中目标物体位置,预先提出候选区域的方法。然后再通过卷积神经网络对候区域进行样本分类。
2、基于端到端学习的目标检测算法:SSD、YOLO
无需预先提出候选区域,网络直接预测输出物体的类别概率和位置坐标值,即我们的网络是统一的网络,经过单词检测即可直接得到最终结果。
二、论文整体框架
1⃣️ 摘要
1、提出了SSD目标检测算法
a、基于端到端学习的目标检测
b、将边界框的输出空间离散化为一组默认框
c、预测结果来自于不同层次的特征图
2、介绍SSD性能
2⃣️ 引言
问题一
1、ground truth(标注框,已知)
2、bounding box (目标检测的输出,未知)
g(x,y,w,h)
B(x’,y’,w’,h’)
A(a1,a2,a3,a4),则
x’=xa1
y’=ya2
w’=wa3
h’=ha4
3、proposal(滑动窗口定位的四个proposal框)
问题二
Selective Search:在原图进行裁剪(RCNN\faster-RCNN)
1、采样
(1)原图SS
(2)特征图进行采样
2、先验框设计尺寸
3、网络结构
要不要跟全连接
问题三
SSD改进:在6个featuremap上用了4-6个anchor框提取特征
问题四:损失函数
3⃣️ SSD网络模型及训练方法
1个 3*3的卷积核(有4个anchor框),stride=1==>滑动窗口
anchor框的区域做置信度的输出与边框回归
NMS:
对100个proposal的置信度做排序,以置信度最大的为基准,让其余99个与最大的计算IOU面积,大于IOU阈值的将被删除
4⃣️ 实验结果
5⃣️相关工作
6⃣️结论
三、模型
问题一 faster-RCNN与SSD区别:
1、SSD密集采样:在不同特征图上用不同尺度featuremap做
2、利用卷积,对每个像素点采样
3、大图预测小物体、小图预测大物体
问题二在SSD论文中,default box:
指的就是proposal框(建议框、先验框)或者anchor框(猫框)
问题三空间金字塔结构(FPN):