Joint embedding of words and labels for text classification 论文解读

本文介绍了一种用于文本分类的深度学习模型,该模型结合了词向量和标签向量,通过注意力机制找出对分类影响最大的词语。模型首先计算词与标签的余弦相似度,然后利用卷积和激活函数提取更高层次的语义信息。通过软最大运算,确定每个词的重要程度,最终加权平均得到文本的聚合表示,用于分类任务。这种方法能有效突出关键信息,提高分类准确性。
摘要由CSDN通过智能技术生成

Joint embedding of words and labels for text classification 论文解读

Motivation

不同的词/字对分类的影响程度不同,目的是找到那些对分类有重要影响的词/字,并赋予他们更高的权重

模型结构
在这里插入图片描述

  • X:[batch_size, sequence_length, vocab_size] one-hot表示每个词/字的输入数据
  • y:[batch_size, class_nums] one-hot表示的输入数据的标签
  • V:[batch_size, embedding_size, sequence_length] 词向量表示每个词/字的输入数据
  • C:[embedding_size, class_nums] label_embedding矩阵
  • G:[batch_size, class_nums, sequence_length]
  • β \beta β:[batch_size, sequence_length] 第1维为softmax后的概率值,表示经过label的attention后,这个词/字的重要性(权重)
  • z:[batch_size, hidden_size] 文本聚合向量,表示整条数据的信息
  • y:[batch_size, class_nums] 第1维为softmax后的概率值
  • f0:将one-hot表示的词/字映射成word_embedding表示
  • f1:将每条数据的word_embedding聚合成一个向量
  • f2:使用文本聚合向量进行分类,即将z映射到y用来分类

前向传播过程

每条数据里的每个词/字,对最后分类结果的影响应该是不同的。
比如说一条文本里有词:湖人、赛前训练等,要分到类别NBA中,"湖人"对应的word_embedding,所占的权重应该高于词"赛前训练"对应的word_embedding。

1.label_embedding矩阵和word_embedding矩阵相乘,并归一化

G矩阵中的一条数据(class_nums × sequence_length)中的每个元素,表示每个词/字的embedding向量与每个label的embedding向量的余弦相似度

在这里插入图片描述

  • C T C^{T} CT:[class_nums, embedding_size]
  • V V V:[batch_size, sequence_length, embedding_dim]
  • ⊘ \oslash :表示元素逐个相除
  • G ^ \hat{G} G^:[batch_size, class_nums, sequence_length]
    每个元素值为, g
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值