连连看
Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 36817 Accepted Submission(s): 9103
Problem Description
“连连看”相信很多人都玩过。没玩过也没关系,下面我给大家介绍一下游戏规则:在一个棋盘中,放了很多的棋子。如果某两个相同的棋子,可以通过一条线连起来(这条线不能经过其它棋子),而且线的转折次数不超过两次,那么这两个棋子就可以在棋盘上消去。不好意思,由于我以前没有玩过连连看,咨询了同学的意见,连线不能从外面绕过去的,但事实上这是错的。现在已经酿成大祸,就只能将错就错了,连线不能从外围绕过。
玩家鼠标先后点击两块棋子,试图将他们消去,然后游戏的后台判断这两个方格能不能消去。现在你的任务就是写这个后台程序。
玩家鼠标先后点击两块棋子,试图将他们消去,然后游戏的后台判断这两个方格能不能消去。现在你的任务就是写这个后台程序。
Input
输入数据有多组。每组数据的第一行有两个正整数n,m(0<n<=1000,0<m<1000),分别表示棋盘的行数与列数。在接下来的n行中,每行有m个非负整数描述棋盘的方格分布。0表示这个位置没有棋子,正整数表示棋子的类型。接下来的一行是一个正整数q(0<q<50),表示下面有q次询问。在接下来的q行里,每行有四个正整数x1,y1,x2,y2,表示询问第x1行y1列的棋子与第x2行y2列的棋子能不能消去。n=0,m=0时,输入结束。
注意:询问之间无先后关系,都是针对当前状态的!
注意:询问之间无先后关系,都是针对当前状态的!
Output
每一组输入数据对应一行输出。如果能消去则输出"YES",不能则输出"NO"。
Sample Input
3 4 1 2 3 4 0 0 0 0 4 3 2 1 4 1 1 3 4 1 1 2 4 1 1 3 3 2 1 2 4 3 4 0 1 4 3 0 2 4 1 0 0 0 0 2 1 1 2 4 1 3 2 3 0 0
Sample Output
YES NO NO NO NO YES
Author
lwg
dfs+拐弯的次数
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
int flag;
int map[1002][1002];
int book[1002][1002];
int row,column;
int sx,sy,ex,ey;
int dire[4][2]={{-1,0},{1,0},{0,-1},{0,1}};
//k代表朝向,1上2下3左4右,cnt用于统计转弯次数
void dfs(int x,int y,int k,int cnt)
{
if(flag)return;//不需要继续搜索了
//转弯超过两次
if(cnt>=3)
return;
if(x==ex&&y==ey)
{
flag=1;
return;
}
//剪枝,如果拐弯次数已经达到两次,那么终点方向必须与当前方向一致
if(cnt==2)
{
if((y==ey&&ex<x&&k!=1)||(y==ey&&ex>x&&k!=2)||(x==ex&&ey<y&&k!=3)||(x==ex&&ey>y&&k!=4))
{
return;
}
}
if(map[x][y])return;//只要不是终点并且不是数字0,便不能跨越;
//进行下一步深搜
for(int i=0;i<4;i++)
{
int nx=x+dire[i][0];
int ny=y+dire[i][1];
if(book[nx][ny]||nx>row||nx<1||ny>column||ny<1)
continue;
else
{
//此条语句用于判断是否改变了方向。
int cnt1=cnt+ !(i+1==k);
book[nx][ny]=1;
dfs(nx,ny,i+1,cnt1);
book[nx][ny]=0;//还原现场;
}
}
return;
}
int main()
{
while(cin>>row>>column,row+column)
{
for(int i=1;i<=row;i++)
for(int j=1;j<=column;j++)
{
cin>>map[i][j];
}
int t;
cin>>t;
while(t--)
{
flag=0;
memset(book,0,sizeof(book));
cin>>sx>>sy>>ex>>ey;
book[sx][sy]=1;
//只有数字均不为0且相等,并且坐标不等的情况下才有可能YES
if(map[sx][sy]==map[ex][ey]&&map[sx][sy]!=0&& !(sx==ex&&sy==ey))
{
for(int i=0;i<4;i++)
{
int nx=sx+dire[i][0];
int ny=sy+dire[i][1];
//被标记,或者越界,不进行搜索
if(book[nx][ny]||nx>row||nx<1||ny>column||ny<1)
continue;
else
{
book[nx][ny]=1;
dfs(nx,ny,i+1,0);
book[nx][ny]=0;//还原现场
}
}
}
if(flag)
{
cout<<"YES"<<endl;
}
else
{
cout<<"NO"<<endl;
}
}
}
return 0;
}
#include<cstring>
#include<algorithm>
using namespace std;
int flag;
int map[1002][1002];
int book[1002][1002];
int row,column;
int sx,sy,ex,ey;
int dire[4][2]={{-1,0},{1,0},{0,-1},{0,1}};
//k代表朝向,1上2下3左4右,cnt用于统计转弯次数
void dfs(int x,int y,int k,int cnt)
{
if(flag)return;//不需要继续搜索了
//转弯超过两次
if(cnt>=3)
return;
if(x==ex&&y==ey)
{
flag=1;
return;
}
//剪枝,如果拐弯次数已经达到两次,那么终点方向必须与当前方向一致
if(cnt==2)
{
if((y==ey&&ex<x&&k!=1)||(y==ey&&ex>x&&k!=2)||(x==ex&&ey<y&&k!=3)||(x==ex&&ey>y&&k!=4))
{
return;
}
}
if(map[x][y])return;//只要不是终点并且不是数字0,便不能跨越;
//进行下一步深搜
for(int i=0;i<4;i++)
{
int nx=x+dire[i][0];
int ny=y+dire[i][1];
if(book[nx][ny]||nx>row||nx<1||ny>column||ny<1)
continue;
else
{
//此条语句用于判断是否改变了方向。
int cnt1=cnt+ !(i+1==k);
book[nx][ny]=1;
dfs(nx,ny,i+1,cnt1);
book[nx][ny]=0;//还原现场;
}
}
return;
}
int main()
{
while(cin>>row>>column,row+column)
{
for(int i=1;i<=row;i++)
for(int j=1;j<=column;j++)
{
cin>>map[i][j];
}
int t;
cin>>t;
while(t--)
{
flag=0;
memset(book,0,sizeof(book));
cin>>sx>>sy>>ex>>ey;
book[sx][sy]=1;
//只有数字均不为0且相等,并且坐标不等的情况下才有可能YES
if(map[sx][sy]==map[ex][ey]&&map[sx][sy]!=0&& !(sx==ex&&sy==ey))
{
for(int i=0;i<4;i++)
{
int nx=sx+dire[i][0];
int ny=sy+dire[i][1];
//被标记,或者越界,不进行搜索
if(book[nx][ny]||nx>row||nx<1||ny>column||ny<1)
continue;
else
{
book[nx][ny]=1;
dfs(nx,ny,i+1,0);
book[nx][ny]=0;//还原现场
}
}
}
if(flag)
{
cout<<"YES"<<endl;
}
else
{
cout<<"NO"<<endl;
}
}
}
return 0;
}