大O复杂度表示法
- 表示代码执行时间随数据规模增长的变化趋势,也叫做渐进时间复杂度,简称时间复杂度
时间复杂度分析的四个比较常用的方法
- 只关注循环执行次数最多的一次代码
忽略掉代码中的常量、低阶、系数,秩只需记录一个最大阶数的量级就可以了。
- 加法法则:总复杂度等于量级最大那段代码的复杂度
如果 T1(n)=O(f(n)),T2(n)=O(g(n));那么T(n) = T1(n) + T2(n) = max(O(f(n)), O(g(n))) = O(max(f(n), g(n)))
int cal(int n) {
int sum_1 = 0;
int p = 1;
for (; p < 100; ++p) {
sum_1 = sum_1 + p;
}
int sum_2 = 0;
int q = 1;
for (; q < n; ++q) {
sum_2 = sum_2 + q;
}
int sum_3 = 0;
int i = 1;
int j = 1;
for (; i <= n; ++i) {
j = 1;
for (; j <= n; ++j) {
sum_3 = sum_3 + i * j;
}
}
return sum_1 + sum_2 + sum_3;
}
对上面代码采用加法法则,时间复杂度为O()
- 乘法法则:嵌套代码的复杂度等于嵌套内外代码复杂度的乘积
如果 T1(n)=O(f(n)),T2(n)=O(g(n)),那么 T(n)=T1(n)*T2(n)=O(f(n))*O(g(n))=O(f(n)*g(n)).
- 多个规模复杂度:两者复杂度相加,此时加法法则不再适用。
int cal(int m, int n) {
int sum_1 = 0;
int i = 1;
for (; i < m; ++i) {
sum_1 = sum_1 + i;
}
int sum_2 = 0;
int j = 1;
for (; j < n; ++j) {
sum_2 = sum_2 + j;
}
return sum_1 + sum_2;
}
从上面代码可以看出,此时时间复杂度为O(m + n)。
此处区分加法法则,由于此时m、n的规模事先不清楚!!!
几种常见时间复杂度
多项式量级
- 常量阶 O(1)
- 对数阶 O(logn)
- 线性阶 O(n)
- 线性对数阶 O(nlogn)
- 平方阶 O(
)、立方阶 O(
) ... k次方阶 O(
)
非多项式量级
上图中的其余量级的时间复杂度称为非多项式量级的算法问题叫做NP(非确定多项式)问题。
非多项式时间复杂度的算法是非常低效的算法。
对数阶分析
i=1;
while (i <= n) {
i = i * 2;
}
如上面代码所示,i值的取值是等比数列。我们如何知道代码总的执行次数呢?
我们只要知道x为多少就可以了。通过,我们求解x。通过换底公式可以得知:
。从计算结果来看,这段代码的时间复杂度为 O(
)。但是我们常用的对数阶公式为
。
在实际分析中,无论是以那个数为底,我们都可以把对数阶的时间复杂度记为 O(log n)。希望能通过这个例子,更好理解对数阶这一量级分析。
同样的 O(nlog n)相当于将 O(log n)循环执行n次即可!
复杂度分析进阶
// n表示数组array的长度
int find(int[] array, int n, int x) {
int i = 0;
int pos = -1;
for (; i < n; ++i) {
if (array[i] == x) {
pos = i;
break;
}
}
return pos;
}
分析上面的代码,我们要查找的变量x可能出现在数组的任意未知。如果数组中第一个元素正好是要查找的变量x,那就不需要继续遍历剩下的n-1个数据了,时间复杂度为O(1)。但如果数组中不存在变量x,那就需要遍历整个数组,时间复杂度就变成了O(n)。不同情况下的代码的时间复杂度是不一样的,故引入如下概念:
- 最好情况时间复杂度:代码在最理想情况下执行的时间复杂度。
- 最坏情况时间复杂度:代码在最坏情况下执行的时间复杂度。
- 平均时间复杂度:用代码在所有情况下执行的次数的加权平均值表示。
- 均摊时间复杂度:在代码执行的所有复杂度情况中绝大部分是低级别的复杂度,个别情况是高级别复杂度且发生具有时序关系时,可以将个别高级别复杂度均摊到低级别复杂度上。基本上均摊结果就等于低级别复杂度。
- 平均和平摊基本就是一个概念,平摊是特殊的平均。在分析时间复杂度是O(1)还是O(n)的时候最简单就是凭感觉,出现O(1)的次数远大于出现O(n)出现的次数,那么平均平摊时间复杂度就是O(1)。
分析下面代码的时间复杂度:
// 全局变量,大小为 10 的数组 array,长度 len,下标 i。
int array[] = new int[10];
int len = 10;
int i = 0;
// 往数组中添加一个元素
void add(int element) {
if (i >= len) { // 数组空间不够了
// 重新申请一个 2 倍大小的数组空间
int new_array[] = new int[len*2];
// 把原来 array 数组中的数据依次 copy 到 new_array
for (int j = 0; j < len; ++j) {
new_array[j] = array[j];
}
// new_array 复制给 array,array 现在大小就是 2 倍 len 了
array = new_array;
len = 2 * len;
}
// 将 element 放到下标为 i 的位置,下标 i 加一
array[i] = element;
++i;
}
最好时间复杂度:O(1)
最坏时间复杂度:O(n)
平均时间复杂度:O(1)