数据结构与算法之美学习笔记01-复杂度分析

本文详细介绍了大O复杂度表示法,强调了时间复杂度分析的关键点,如忽略常量、低阶项和系数。文章讨论了加法和乘法法则在计算总复杂度时的应用,并列举了常见的时间复杂度量级,包括多项式和非多项式量级。还深入探讨了对数阶分析,并简要提到了复杂度分析的进阶概念,如最好、最坏和平均时间复杂度以及均摊时间复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大O复杂度表示法

  1. T\left ( n \right ) =T(a) = O(f(n))
  2. 表示代码执行时间随数据规模增长的变化趋势,也叫做渐进时间复杂度,简称时间复杂度

时间复杂度分析的四个比较常用的方法

  • 只关注循环执行次数最多的一次代码

     忽略掉代码中的常量、低阶、系数,秩只需记录一个最大阶数的量级就可以了。

  • 加法法则:总复杂度等于量级最大那段代码的复杂度

    如果 T1(n)=O(f(n)),T2(n)=O(g(n));那么T(n) = T1(n) + T2(n) = max(O(f(n)), O(g(n))) = O(max(f(n), g(n)))

int cal(int n) {
   int sum_1 = 0;
   int p = 1;
   for (; p < 100; ++p) {
     sum_1 = sum_1 + p;
   }

   int sum_2 = 0;
   int q = 1;
   for (; q < n; ++q) {
     sum_2 = sum_2 + q;
   }
 
   int sum_3 = 0;
   int i = 1;
   int j = 1;
   for (; i <= n; ++i) {
     j = 1; 
     for (; j <= n; ++j) {
       sum_3 = sum_3 +  i * j;
     }
   }
 
   return sum_1 + sum_2 + sum_3;
 }

     对上面代码采用加法法则,时间复杂度为O(n^{2})

  • 乘法法则:嵌套代码的复杂度等于嵌套内外代码复杂度的乘积

     如果 T1(n)=O(f(n)),T2(n)=O(g(n)),那么 T(n)=T1(n)*T2(n)=O(f(n))*O(g(n))=O(f(n)*g(n)).

  • 多个规模复杂度:两者复杂度相加,此时加法法则不再适用
int cal(int m, int n) {
  int sum_1 = 0;
  int i = 1;
  for (; i < m; ++i) {
    sum_1 = sum_1 + i;
  }

  int sum_2 = 0;
  int j = 1;
  for (; j < n; ++j) {
    sum_2 = sum_2 + j;
  }

  return sum_1 + sum_2;
}

从上面代码可以看出,此时时间复杂度为O(m + n)。

此处区分加法法则,由于此时m、n的规模事先不清楚!!!

几种常见时间复杂度

                                     

多项式量级

  • 常量阶 O(1)
  • 对数阶 O(logn)
  • 线性阶 O(n)
  • 线性对数阶 O(nlogn)
  • 平方阶 O(n^{2})、立方阶 O(n^{3}) ... k次方阶 O(n^{k}

非多项式量级

上图中的其余量级的时间复杂度称为非多项式量级的算法问题叫做NP(非确定多项式)问题。

非多项式时间复杂度的算法是非常低效的算法。

对数阶分析

 i=1;
 while (i <= n)  {
   i = i * 2;
 }

 如上面代码所示,i值的取值是等比数列。我们如何知道代码总的执行次数呢?

                             

我们只要知道x为多少就可以了。通过2^{x} = n,我们求解x。通过换底公式可以得知:x = log_{2}n。从计算结果来看,这段代码的时间复杂度为 O(log_{2}n)。但是我们常用的对数阶公式为log_{10}n

在实际分析中,无论是以那个数为底,我们都可以把对数阶的时间复杂度记为 O(log n)。希望能通过这个例子,更好理解对数阶这一量级分析。

同样的 O(nlog n)相当于将 O(log n)循环执行n次即可!

       

复杂度分析进阶

// n表示数组array的长度
int find(int[] array, int n, int x) {
  int i = 0;
  int pos = -1;
  for (; i < n; ++i) {
    if (array[i] == x) {
       pos = i;
       break;
    }
  }
  return pos;
}

分析上面的代码,我们要查找的变量x可能出现在数组的任意未知。如果数组中第一个元素正好是要查找的变量x,那就不需要继续遍历剩下的n-1个数据了,时间复杂度为O(1)。但如果数组中不存在变量x,那就需要遍历整个数组,时间复杂度就变成了O(n)。不同情况下的代码的时间复杂度是不一样的,故引入如下概念:

  • 最好情况时间复杂度:代码在最理想情况下执行的时间复杂度。
  • 最坏情况时间复杂度:代码在最坏情况下执行的时间复杂度。
  • 平均时间复杂度:用代码在所有情况下执行的次数的加权平均值表示。
  • 均摊时间复杂度:在代码执行的所有复杂度情况中绝大部分是低级别的复杂度,个别情况是高级别复杂度且发生具有时序关系时,可以将个别高级别复杂度均摊到低级别复杂度上。基本上均摊结果就等于低级别复杂度。
  • 平均和平摊基本就是一个概念,平摊是特殊的平均。在分析时间复杂度是O(1)还是O(n)的时候最简单就是凭感觉,出现O(1)的次数远大于出现O(n)出现的次数,那么平均平摊时间复杂度就是O(1)。

分析下面代码的时间复杂度:

// 全局变量,大小为 10 的数组 array,长度 len,下标 i。
int array[] = new int[10]; 
int len = 10;
int i = 0;

// 往数组中添加一个元素
void add(int element) {
   if (i >= len) { // 数组空间不够了
     // 重新申请一个 2 倍大小的数组空间
     int new_array[] = new int[len*2];
     // 把原来 array 数组中的数据依次 copy 到 new_array
     for (int j = 0; j < len; ++j) {
       new_array[j] = array[j];
     }
     // new_array 复制给 array,array 现在大小就是 2 倍 len 了
     array = new_array;
     len = 2 * len;
   }
   // 将 element 放到下标为 i 的位置,下标 i 加一
   array[i] = element;
   ++i;
}

最好时间复杂度:O(1)

最坏时间复杂度:O(n)

平均时间复杂度:O(1)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值