GNN系列(二):消息传递图神经网络

GNN系列(二):消息传递图神经网络

消息传递范式是一种聚合邻接节点信息来更新中心节点信息的范式,它将卷积算子推广到了不规则数据领域,实现了图与神经网络的连接。此范式包含三个步骤:(1)邻接节点信息变换、(2)邻接节点信息聚合到中心节点、(3)聚合信息变换
下方图片展示了基于消息传递范式的生成节点表征的过程

  1. 在图的最右侧,B节点的邻接节点(A,C)的信息传递给了B,经过信息变换得到了B的嵌入,C、D节点同。
  2. 在图的中右侧,A节点的邻接节点(B,C,D)的之前得到的节点嵌入传递给了节点A;在图的中左侧,聚合得到的信息经过信息变换得到了A节点新的嵌入。
  3. 重复多次,我们可以得到每一个节点的经过多次信息变换的嵌入。这样的经过多次信息聚合与变换的节点嵌入就可以作为节点的表征,可以用于节点的分类。
    在这里插入图片描述

Pytorch Geometric中的MessagePassing基类

Pytorch Geometric(PyG)提供了MessagePassing基类,它实现了消息传播的自动处理,继承该基类可使我们方便地构造消息传递图神经网络,我们只需定义函数 ϕ \phi ϕ,即message()函数,和函数 γ \gamma γ,即update()函数,以及使用的消息聚合方案,即aggr="add"aggr="mean"aggr="max"。这些是在以下方法的帮助下完成的:

  • MessagePassing(aggr="add", flow="source_to_target", node_dim=-2)
    • aggr:定义要使用的聚合方案(“add”、"mean "或 “max”);
    • flow:定义消息传递的流向("source_to_target "或 “target_to_source”);
    • node_dim:定义沿着哪个轴线传播。
  • MessagePassing.propagate(edge_index, size=None, **kwargs)
    • 开始传播消息的起始调用。它以edge_index(边的端点的索引)和flow(消息的流向)以及一些额外的数据为参数。
    • 请注意,propagate()不仅限于在形状为[N, N]的对称邻接矩阵中交换消息,还可以通过传递size=(N, M)作为额外参数。例如,在二部图的形状为[N, M]的一般稀疏分配矩阵中交换消息。
    • 如果设置size=None,则假定邻接矩阵是对称的。
    • 对于有两个独立的节点集合和索引集合的二部图,并且每个集合都持有自己的信息,我们可以传递一个元组参数,即x=(x_N, x_M),来标记信息的区分。
  • MessagePassing.message(...)
    • 首先确定要给节点 i i i传递消息的边的集合,如果flow="source_to_target",则是 ( j , i ) ∈ E (j,i) \in \mathcal{E} (j,i)E的边的集合;
    • 如果flow="target_to_source",则是 ( i , j ) ∈ E (i,j) \in \mathcal{E} (i,j)E的边的集合。
    • 接着为各条边创建要传递给节点 i i i的消息,即实现 ϕ \phi ϕ函数。
    • MessagePassing.message(...)函数接受最初传递给MessagePassing.propagate(edge_index, size=None, **kwargs)函数的所有参数。
    • 此外,传递给propagate()的张量可以被映射到各自的节点 i i i j j j上,只需在变量名后面加上_i_j。我们把 i i i称为消息传递的目标中心节点,把 j j j称为邻接节点。
  • MessagePassing.aggregate(...)
    • 将从源节点传递过来的消息聚合在目标节点上,一般可选的聚合方式有sum, meanmax
  • MessagePassing.message_and_aggregate(...)
    • 在一些场景里,邻接节点信息变换和邻接节点信息聚合这两项操作可以融合在一起,那么我们可以在此函数里定义这两项操作,从而让程序运行更加高效。
  • MessagePassing.update(aggr_out, ...):
    • 为每个节点 i ∈ V i \in \mathcal{V} iV更新节点表征,即实现 γ \gamma γ函数。该函数以聚合函数的输出为第一个参数,并接收所有传递给propagate()函数的参数。

继承MessagePassing类的GCNConv

GCNConv的数学定义为
x i ( k ) = ∑ j ∈ N ( i ) ∪ { i } 1 deg ⁡ ( i ) ⋅ deg ⁡ ( j ) ⋅ ( Θ ⋅ x j ( k − 1 ) ) , \mathbf{x}_i^{(k)} = \sum_{j \in \mathcal{N}(i) \cup \{ i \}} \frac{1}{\sqrt{\deg(i)} \cdot \sqrt{\deg(j)}} \cdot \left( \mathbf{\Theta} \cdot \mathbf{x}_j^{(k-1)} \right), xi(k)=jN(i){i}deg(i) deg(j) 1(Θxj(k1)),
其中,相邻节点的特征首先通过权重矩阵 Θ \mathbf{\Theta} Θ进行转换,然后按端点的度进行归一化处理,最后进行加总。这个公式可以分为以下几个步骤:

  1. 向邻接矩阵添加自环边。
  2. 线性转换节点特征矩阵。
  3. 计算归一化系数。
  4. 归一化 j j j中的节点特征。
  5. 将相邻节点特征相加("求和 "聚合)。

步骤1-3通常是在消息传递发生之前计算的。步骤4-5可以使用MessagePassing基类轻松处理。
 
 
 
消息传递范式是实现图神经网络的一种通用范式。消息传递范式遵循“消息传播->消息聚合->消息更新”这一过程,实现将邻接节点的信息聚合到中心节点上。在PyG中,MessagePassing是所有基于消息传递范式的图神经网络的基类。MessagePassing类大大方便了图神经网络的构建,但由于其高度封装性,它也隐藏了很多的细节。

作业

  1. 请总结MessagePassing类的运行流程以及继承MessagePassing类的规范。
  2. 请继承MessagePassing类来自定义以下的图神经网络类,并进行测试:
    1. 第一个类,覆写message函数,要求该函数接收消息传递源节点属性x、目标节点度d
    2. 第二个类,在第一个类的基础上,再覆写aggregate函数,要求不能调用super类的aggregate函数,并且不能直接复制super类的aggregate函数内容。
    3. 第三个类,在第二个类的基础上,再覆写update函数,要求对节点信息做一层线性变换。
    4. 第四个类,在第三个类的基础上,再覆写message_and_aggregate函数,要求在这一个函数中实现前面message函数和aggregate函数的功能。
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值