深度学习(四):深度学习介绍和反向传播机制

深度学习(四):深度学习介绍和反向传播机制

深度学习的三个步骤

我们都知道机器学习有三个step,对于deep learning其实也是3个步骤:
在这里插入图片描述

  • Step1:神经网络(Neural network)
  • Step2:模型评估(Goodness of function)
  • Step3:选择最优函数(Pick best function)

那对于深度学习的Step1就是神经网络(Neural Network)

Step1:神经网络

神经网络(Neural network)里面的节点,类似我们的神经元。
在这里插入图片描述
神经网络也可以有很多不同的连接方式,这样就会产生不同的结构(structure)在这个神经网络里面,我们有很多逻辑回归函数,其中每个逻辑回归都有自己的权重和自己的偏差,这些权重和偏差就是参数。
那这些神经元都是通过什么方式连接的呢?其实连接方式都是手动去设计的。

完全连接前馈神经网络

概念:前馈(feedforward)也可以称为前向,从信号流向来理解就是输入信号进入网络后,信号流动是单向的,即信号从前一层流向后一层,一直到输出层,其中任意两层之间的连接并没有反馈(feedback),亦即信号没有从后一层又返回到前一层。
在这里插入图片描述

  • 当已知权重和偏差时输入 ( 1 , − 1 ) (1,-1) (1,1)的结果
  • 当已知权重和偏差时输入 ( − 1 , 0 ) (-1,0) (1,0)的结果
    在这里插入图片描述
    上图是输入为1和-1的时候经过一系列复杂的运算得到的结果

在这里插入图片描述
当输入0和0时,则得到0.51和0.85,所以一个神经网络如果权重和偏差都知道的话就可以看成一个函数,其输入是一个向量,对应的输出也是一个向量。不论是做回归模型(linear model)还是逻辑回归(logistics regression)都是定义了一个函数集(function set)。我们可以给上面的结构的参数设置为不同的数,就是不同的函数(function)。这些可能的函数(function)结合起来就是一个函数集(function set)。这个时候你的函数集(function set)是比较大的,是以前的回归模型(linear model)等没有办法包含的函数(function),所以说深度学习(Deep Learning)能表达出以前所不能表达的情况。

我们通过另一种方式显示这个函数集:

全链接和前馈的理解
  • 输入层(Input Layer):1层
  • 隐藏层(Hidden Layer):N层
  • 输出层(Output Layer):1层

在这里插入图片描述

  • 为什么叫全链接呢?
    • 因为layer1与layer2之间两两都有连接,所以叫做Fully Connect;
  • 为什么叫前馈呢?
    • 因为现在传递的方向是由后往前传,所以叫做Feedforward。
深度的理解

那什么叫做Deep呢?Deep = Many hidden layer。
随着层数变多,错误率降低,随之运算量增大,通常都是超过亿万级的计算。对于这样复杂的结构,我们一定不会一个一个的计算,对于亿万级的计算,使用loop循环效率很低。

这里我们就引入矩阵计算(Matrix Operation)能使得我们的运算的速度以及效率高很多:

矩阵计算

如下图所示,输入是 [ 1 − 2 − 1 1 ] \begin{bmatrix}&1&-2\\ &-1&1\end{bmatrix} [1121],输出是 [ 0.98 0.12 ] \begin{bmatrix}&0.98\\ &0.12\end{bmatrix} [0.980.12]
计算方法就是:sigmoid(权重w【黄色】 * 输入【蓝色】+ 偏移量b【绿色】)= 输出
在这里插入图片描述
其中sigmoid更一般的来说是激活函数(activation function),现在已经很少用sigmoid来当做激活函数。

如果有很多层呢?
a 1 = σ ( w 1 x + b 1 ) a 2 = σ ( w 1 a 1 + b 2 ) ⋅ ⋅ ⋅ y = σ ( w L a L − 1 + b L ) a^1 = \sigma (w^1x+b^1) \\ a^2 = \sigma (w^1a^1+b^2) \\ ··· \\ y = \sigma (w^La^{L-1}+b^L) a1=σ(w1x+b1)a2=σ(w1a1+b2)y=σ(wLaL1+bL)

在这里插入图片描述
计算方法就像是嵌套,这里就不列公式了,结合上一个图更好理解。所以整个神经网络运算就相当于一连串的矩阵运算。
在这里插入图片描述
从结构上看每一层的计算都是一样的,也就是用计算机进行并行矩阵运算。
这样写成矩阵运算的好处是,你可以使用GPU加速。
整个神经网络可以这样看:

本质:通过隐藏层进行特征转换

把隐藏层通过特征提取来替代原来的特征工程,这样在最后一个隐藏层输出的就是一组新的特征(相当于黑箱操作)而对于输出层,其实是把前面的隐藏层的输出当做输入(经过特征提取得到的一组最好的特征)然后通过一个多分类器(可以是softmax函数)得到最后的输出y。

在这里插入图片描述

Step2: 模型评估

损失示例

在这里插入图片描述
对于模型的评估,我们一般采用损失函数来反应模型的好差,所以对于神经网络来说,我们采用交叉熵(cross entropy)函数来对 y y y y ^ \hat{y} y^的损失进行计算,接下来我们就是调整参数,让交叉熵越小越好。

总体损失

在这里插入图片描述
对于损失,我们不单单要计算一笔数据的,而是要计算整体所有训练数据的损失,然后把所有的训练数据的损失都加起来,得到一个总体损失L。接下来就是在function set里面找到一组函数能最小化这个总体损失L,或者是找一组神经网络的参数 θ \theta θ,来最小化总体损失L

Step3:选择最优函数

如何找到最优的函数和最好的一组参数呢,我们用的就是梯度下降。

在这里插入图片描述
在这里插入图片描述
具体流程: θ \theta θ是一组包含权重和偏差的参数集合,随机找一个初试值,接下来计算一下每个参数对应偏微分,得到的一个偏微分的集合 ∇ L \nabla{L} L就是梯度,有了这些偏微分,我们就可以不断更新梯度得到新的参数,这样不断反复进行,就能得到一组最好的参数使得损失函数的值最小

反向传播

在这里插入图片描述
在神经网络中计算损失最好的方法就是反向传播,我们可以用很多框架来进行计算损失,比如说TensorFlow,theano,Pytorch等等。

思考

为什么要用深度学习,深层架构带来哪些好处?那是不是隐藏层越多越好?

隐藏层越多越好?

在这里插入图片描述
从图中展示的结果看,毫无疑问,层次越深效果越好~~

普遍性定理

在这里插入图片描述
参数多的model拟合数据很好是很正常的。下面有一个通用的理论:
对于任何一个连续的函数,都可以用足够多的隐藏层来表示。

反向传播机理

梯度下降

在这里插入图片描述

  • 给到 θ \theta θ (weight and bias)
  • 先选择一个初始的 θ 0 \theta^0 θ0,计算 θ 0 \theta^0 θ0 的损失函数(Loss Function)设一个参数的偏微分
  • 计算完这个向量(vector)偏微分,然后就可以去更新的你 θ \theta θ
  • 百万级别的参数(millions of parameters)
  • 反向传播(Backpropagation)是一个比较有效率的算法,让你计算梯度(Gradient) 的向量(Vector)时,可以有效率的计算出来

链式法则

在这里插入图片描述

  • 连锁影响(可以看出x会影响y,y会影响z)
  • BP主要用到了chain rule

反向传播

  1. 损失函数(Loss function)是定义在单个训练样本上的,也就是就算一个样本的误差,比如我们想要分类,就是预测的类别和实际类别的区别,是一个样本的,用L表示。
  2. 代价函数(Cost function)是定义在整个训练集上面的,也就是所有样本的误差的总和的平均,也就是损失函数的总和的平均,有没有这个平均其实不会影响最后的参数的求解结果。
  3. 总体损失函数(Total loss function)是定义在整个训练集上面的,也就是所有样本的误差的总和。也就是平时我们反向传播需要最小化的值。
    在这里插入图片描述
    对于 L ( θ ) L(\theta) L(θ)就是所有 l n l^n ln的损失之和,所以如果要算每个 L ( θ ) L(\theta) L(θ)的偏微分,我们只要算每个 l n l^n ln的偏微分,再把所有 l n l^n ln偏微分的结果加起来就是 L ( θ ) L(\theta) L(θ)的偏微分,所以等下我们只计算每个 l n l^n ln的偏微分。
    我们先在整个神经网络(Neural network)中抽取出一小部分的神经(Neuron)去看(也就是红色标注的地方):
    在这里插入图片描述
    从这一小部分中去看,把计算梯度分成两个部分
  • 计算 ∂ z ∂ w \frac{\partial z}{\partial w} wz(Forward pass的部分)
  • 计算 ∂ l ∂ z \frac{\partial l}{\partial z} zl ( Backward pass的部分 )

Forward Pass

那么,首先计算 ∂ z ∂ w \frac{\partial z}{\partial w} wz(Forward pass的部分):
在这里插入图片描述
根据求微分原理,forward pass的运算规律就是:

∂ z ∂ w 1 = x 1 ∂ z ∂ w 2 = x 2 \frac{\partial z}{\partial w_1} = x_1 \\ \frac{\partial z}{\partial w_2} = x_2 w1z=x1w2z=x2
这里计算得到的 x 1 x_1 x1 x 2 x_2 x2恰好就是输入的 x 1 x_1 x1 x 2 x_2 x2
直接使用数字,更直观地看到运算规律:
在这里插入图片描述

Backward Pass

(Backward pass的部分)这就很困难复杂因为我们的l是最后一层:
那怎么计算 ∂ l ∂ z \frac{\partial l}{\partial z} zl (Backward pass的部分)这就很困难复杂因为我们的 l l l是最后一层:

在这里插入图片描述
计算所有激活函数的偏微分,激活函数有很多,这里使用Sigmoid函数为例

这里使用链式法则(Chain Rule)的case1,计算过程如下:

∂ l ∂ z = ∂ a ∂ z ∂ l ∂ a ⇒ σ ′ ( z ) \frac{\partial l}{\partial z} = \frac{\partial a}{\partial z}\frac{\partial l}{\partial a} \Rightarrow {\sigma}'(z) zl=zaalσ(z)
∂ l ∂ a = ∂ z ′ ∂ a ∂ l ∂ z ′ + ∂ z ′ ′ ∂ a ∂ l ∂ z ′ ′ \frac{\partial l}{\partial a} = \frac{\partial z'}{\partial a}\frac{\partial l}{\partial z'} +\frac{\partial z''}{\partial a}\frac{\partial l}{\partial z''} al=azzl+azzl

在这里插入图片描述
最终的式子结果:
在这里插入图片描述
但是你可以想象从另外一个角度看这个事情,现在有另外一个神经元,把forward的过程逆向过来,其中 σ ′ ( z ) {\sigma}'(z) σ(z)是常数,因为它在向前传播的时候就已经确定了

在这里插入图片描述

case 1 : Output layer

假设 ∂ l ∂ z ′ \frac{\partial l}{\partial z'} zl ∂ l ∂ z ′ ′ \frac{\partial l}{\partial z''} zl是最后一层的隐藏层
也就是就是y1与y2是输出值,那么直接计算就能得出结果
在这里插入图片描述
但是如果不是最后一层,计算 ∂ l ∂ z ′ \frac{\partial l}{\partial z'} zl ∂ l ∂ z ′ ′ \frac{\partial l}{\partial z''} zl的话就需要继续往后一直通过链式法则算下去

case 2 : Not Output Layer

在这里插入图片描述
对于这个问题,我们要继续计算后面绿色的 ∂ l ∂ z a \frac{\partial l}{\partial z_a} zal ∂ l ∂ z b \frac{\partial l}{\partial z_b} zbl,然后通过继续乘 w 5 w_5 w5 w 6 w_6 w6得到 ∂ l ∂ z ′ \frac{\partial l}{\partial z'} zl,但是要是 ∂ l ∂ z a \frac{\partial l}{\partial z_a} zal ∂ l ∂ z b \frac{\partial l}{\partial z_b} zbl都不知道,那么我们就继续往后面层计算,一直到碰到输出值,得到输出值之后再反向往输入那个方向走。
在这里插入图片描述
对上图,我们可以从最后一个 ∂ l ∂ z 5 \frac{\partial l}{\partial z_5} z5l ∂ l ∂ z 6 \frac{\partial l}{\partial z_6} z6l看,因为 ∂ l ∂ z a \frac{\partial l}{\partial z_a} zal ∂ l ∂ z b \frac{\partial l}{\partial z_b} zbl比较容易通过output求出来,然后继续往前求 ∂ l ∂ z 3 \frac{\partial l}{\partial z_3} z3l ∂ l ∂ z 4 \frac{\partial l}{\partial z_4} z4l,再继续求 ∂ l ∂ z 1 \frac{\partial l}{\partial z_1} z1l ∂ l ∂ z 2 \frac{\partial l}{\partial z_2} z2l
最后我们就得到下图的结果
在这里插入图片描述
实际上进行backward pass时候和向前传播的计算量差不多。

总结

我们的目标是要求计算 ∂ z ∂ w \frac{\partial z}{\partial w} wz(Forward pass的部分)和计算 ∂ l ∂ z \frac{\partial l}{\partial z} zl ( Backward pass的部分 ),然后把 ∂ z ∂ w \frac{\partial z}{\partial w} wz ∂ l ∂ z \frac{\partial l}{\partial z} zl相乘,我们就可以得到 ∂ l ∂ w \frac{\partial l}{\partial w} wl,所有我们就可以得到神经网络中所有的参数,然后用梯度下降就可以不断更新,得到损失最小的函数

在这里插入图片描述

参考资料

  1. 李宏毅《机器学习》_bilibili视频

  2. datawhale在线学习笔记

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值