张学工模式识别第四版——03 概率密度函数的估计

第3章 概率密度函数的估计

3.2 最大似然估计

3.2.3 正态分布下的最大似然估计

正态分布最大似然估计的推导过程

对于一元正态分布要估计的参数为 θ = [ θ 1 , θ 2 ] T = [ μ , σ 2 ] T \theta=[\theta_1,\theta_2]^T=[\mu,\sigma^2]^T θ=[θ1,θ2]T=[μ,σ2]T,估计量为:

μ ^ = 1 N ∑ k = 1 N x k σ ^ 2 = 1 N ∑ k = 1 N ( x k − μ ^ ) 2 \begin{aligned} &\hat \mu=\frac{1}{N}\sum\limits_{k=1}^Nx_k \\ &\hat \sigma^2=\frac{1}{N}\sum\limits_{k=1}^N(x_k-\hat \mu)^2\end{aligned} μ^=N1k=1Nxkσ^2=N1k=1N(xkμ^)2

对于多元正态分布有:

μ ^ = 1 N ∑ i = 1 N x i Σ ^ 2 = 1 N ∑ i = 1 N ( x i − μ ^ ) ( x i − μ ^ ) T \begin{aligned} &\hat \mu=\frac{1}{N}\sum\limits_{i=1}^Nx_i \\ &\hat \Sigma^2=\frac{1}{N}\sum\limits_{i=1}^N(x_i-\hat \mu)(x_i-\hat \mu)^T\end{aligned} μ^=N1i=1NxiΣ^2=N1i=1N(xiμ^)(xiμ^)T

3.3 贝叶斯估计与贝叶斯学习

3.3.1 贝叶斯估计

独立同分布样本,样本集的联合分布为:

p ( H ∣ θ ) = ∏ i = 1 N p ( x i ∣ θ ) p( \mathscr{H} \mid \theta)=\prod_{i=1}^{N} p\left(x_{i} \mid \theta\right) p(Hθ)=i=1Np(xiθ)

利用贝叶斯公式求theta的后验概率分布:

p ( θ ∣ H ) = p ( H ∣ θ ) p ( θ ) ∫ Θ p ( H ∣ θ ) p ( θ ) d θ p(\theta \mid \mathscr{H})=\frac{p(\mathscr{H} \mid \theta) p(\theta)}{\int_{\Theta} p(\mathscr{H} \mid \theta) p(\theta) \mathrm{d} \theta} p(θH)=Θp(Hθ)p(θ)dθp(Hθ)p(θ)

由此可得theta的贝叶斯估计量为:

θ ∗ = ∫ Θ θ p ( θ ∣ H ) d θ \theta^{*}=\int_{\Theta} \theta p(\theta \mid \mathscr{H}) \mathrm{d} \theta θ=Θθp(θH)dθ

或者直接由后验概率分布得到样本的概率密度函数:

p ( x ∣ H ) = ∫ Θ p ( x ∣ θ ) p ( θ ∣ H ) d θ p(x \mid \mathscr{H})=\int_{\Theta} p(x \mid \theta) p(\theta \mid \mathscr{H}) d \theta p(xH)=Θp(xθ)p(θH)dθ

3.3.2 贝叶斯学习

△△△△贝叶斯学习步骤△△△△

3.3.3 正态分布时的贝叶斯估计

正态分布贝叶斯估计推导

假设样本模型均值 μ \mu μ是待估计参数,方差 σ 2 \sigma^2 σ2已知,且假定 μ \mu μ的先验分布满足 μ ∼ N ( μ 0 , σ 0 2 ) \mu \sim N(\mu_0,\sigma_0^2) μN(μ0,σ02),由贝叶斯估计:

μ N = N σ 0 2 N σ 0 2 + σ 2 m N + σ 2 N σ 0 2 + σ 2 μ 0 σ N 2 = σ 0 2 σ 2 N σ 0 2 + σ 2 \begin{aligned} & \mu_N=\frac{N\sigma_0^2}{N\sigma_0^2+\sigma^2}m_N+\frac{\sigma^2}{N\sigma_0^2+\sigma^2}\mu_0 \\ &\sigma_N^2=\frac{\sigma_0^2\sigma^2}{N\sigma_0^2+\sigma^2} \end{aligned} μN=Nσ02+σ2Nσ02mN+Nσ02+σ2σ2μ0σN2=Nσ02+σ2σ02σ2

其中, m N = ∑ i = 1 N x i m_N=\sum\limits_{i=1}^Nx_i mN=i=1Nxi是所有观测样本的算术平均。

也可直接求出样本的概率密度函数 p ( x ∣ H ) ∼ N ( μ N , σ 2 + σ N 2 ) p(x|\mathscr{H}) \sim N(\mu_N,\sigma^2+\sigma_N^2) p(xH)N(μN,σ2+σN2)

3.4 概率密度估计的非参数方法

直方图法,小区域范围内的概密:

p ( x ) ^ = k N V \hat{p(x)} =\frac{k}{NV} p(x)^=NVk

样本无穷多时 p ( x ) ^ \hat{p(x)} p(x)^收敛于 p ( x ) p(x) p(x)的条件是:

( 1 ) lim ⁡ n → ∞ V n = 0 ,   ( 2 ) lim ⁡ n → ∞ k n = ∞ ,   ( 3 ) lim ⁡ n → ∞ k n n = 0 (1)\lim \limits_{n\rightarrow\infty} V_n=0, \ (2)\lim \limits_{n\rightarrow\infty} k_n=\infty, \ (3)\lim \limits_{n\rightarrow\infty} \frac{k_n}{n}=0 (1)nlimVn=0, (2)nlimkn=, (3)nlimnkn=0

( 1 ) lim ⁡ n → ∞ V n = 0 ,   ( 2 ) lim ⁡ n → ∞ k n = ∞ ,   ( 3 ) lim ⁡ n → ∞ k n n = 0 (1)\lim \limits_{n\rightarrow\infty} V_n=0, \ (2)\lim \limits_{n\rightarrow\infty} k_n=\infty, \ (3)\lim \limits_{n\rightarrow\infty} \frac{k_n}{n}=0 (1)nlimVn=0, (2)nlimkn=, (3)nlimnkn=0

kn近邻法估计小区域的概密:

p ( x ) ^ = k N N V \hat{p(x)} =\frac{k_N}{NV} p(x)^=NVkN

方窗函数:

φ ( [ u 1 , u 2 , ⋯   , u d ] T ) = { 1 ∣ u j ∣ ⩽ 1 2 , j = 1 , 2 , ⋯   , d 0  其他  \varphi\left(\left[u_{1}, u_{2}, \cdots, u_{d}\right]^{\mathrm{T}}\right)= \begin{cases}1 & \left|u_{j}\right| \leqslant \frac{1}{2}, j=1,2, \cdots, d \\ 0 & \text { 其他 }\end{cases} φ([u1,u2,,ud]T)={10uj21,j=1,2,,d 其他 

parzen窗法小区域内的概密:

p ^ ( x ) = 1 N ∑ i = 1 N K ( x , x i ) \hat{p}(x)=\frac{1}{N} \sum_{i=1}^{N} K\left(x, x_{i}\right) p^(x)=N1i=1NK(x,xi)

其中窗函数与核函数的关系:

K ( x , x i ) = 1 V φ ( x − x i h ) K\left(x, x_{i}\right)=\frac{1}{V} \varphi\left(\frac{x-x_{i}}{h}\right) K(x,xi)=V1φ(hxxi)

几种 p ^ ( x ) = 1 N ∑ i = 1 N K ( x , x i ) \hat{p}(x)=\frac{1}{N} \sum_{i=1}^{N} K\left(x, x_{i}\right) p^(x)=N1i=1NK(x,xi)中的核函数如下:

方窗:

$$
k(x,x_i)=
\left{
\begin{aligned}

&\frac{1}{h^d} \quad|xj-x_ij| \leq \frac{h}{2}, \quad j=1,2,\cdots,d \
&0 \quad其它

\end{aligned}
\right.
$$

其和方窗函数的关系:

k ( x , x i ) = 1 h d φ ( x − x i h ) k(x,x_i)=\frac{1}{h^d}\varphi(\frac{x-x_i}{h}) k(x,xi)=hd1φ(hxxi)

高斯窗(正态窗)

k ( x , x i ) = 1 ( 2 π ) d ρ 2 d ∣ Q ∣ exp ⁡ [ − 1 2 ( x − x i ) T Q − 1 ( x − x i ) ρ 2 ] k(x,x_i)=\frac{1}{\sqrt{(2\pi)^d\rho^{2d}|Q|}}\exp[{-\frac{1}{2}}\frac{(x-x_i)^TQ^{-1}(x-x_i)}{\rho^2}] k(x,xi)=(2π)dρ2dQ 1exp[21ρ2(xxi)TQ1(xxi)]

如果是一维正态窗,有:

k ( x , x i ) = 1 2 π σ exp ⁡ { − 1 2 ( x − x i σ ) 2 } k(x,x_i)=\frac{1}{\sqrt{2\pi}\sigma}\exp\{-\frac{1}{2}(\frac{x-x_i}{\sigma})^2\} k(x,xi)=2π σ1exp{21(σxxi)2}

超球窗:

$$
k(x,x_i)=
\left{
\begin{aligned}

&V^{-1} \quad||x-x_i|| \leq \rho \
&0 \quad其它

\end{aligned}
\right.
$$

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
模式识别第四版)》是由学工教授编著的一本关于模式识别领域的经典教材。该书系统介绍了模式识别的基本概念、原理和方法,为读者提供了全面而深入的学习材料。 该书首先介绍了模式识别的基本概念和发展历程,让读者对该领域有一个整体的了解。接着,书中详细讲解了常用的模式识别技术,如特征提取、分类器设计和模型评估等。通过具体的案例和算法实现,读者可以深入了解这些技术的原理和应用。 在第四版中,学工教授对书中的内容进行了全面的更新和扩展。他引入了最新的研究成果和应用案例,以反映模式识别领域的最新发展。同时,他还加入了更多的实例和习题,帮助读者巩固所学知识。 该书的特点之一是注重理论和实践相结合。学工教授不仅详细解释了各种模式识别方法的原理,还给出了大量的实验和实例,让读者能够亲自动手实践。这样的学习方式能够帮助读者更好地理解和掌握模式识别的理论和方法。 总之,《模式识别第四版)》是一本全面而深入的模式识别教材,适合作为高等院校计算机科学、电子工程和人工智能等专业的教材,也适合作为相关领域从业人员的参考书。无论是对模式识别感兴趣的读者,还是对该领域有一定了解的专业人士,都可以从中获取到宝贵的知识和经验。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值