高等数学——常用结论(1)

0 补充公式

负数不可为底数,有时可以作为隐含的参数求解条件

以下四种情况一定要分左右极限:

  1. 分段函数的分界点
  2. lim ⁡ x → 0 1 x \lim\limits_{x \rightarrow 0}\frac{1}{x} x0limx1
  3. lim ⁡ x → 0 e 1 x \lim\limits_{x \rightarrow 0}e^{\frac{1}{x}} x0limex1
  4. lim ⁡ x → 0 arctan ⁡ 1 x \lim\limits_{x \rightarrow 0}\arctan{\frac{1}{x}} x0limarctanx1

函数不等式的常用的五种方法:

  1. 单调性(90%)
  2. 最大最小值
  3. 拉中
  4. 泰勒公式
  5. 凹凸性

反函数常见处理方式:

  1. 对于 y = f ( x ) y=f(x) y=f(x)的反函数相关问题,经常考虑变量替换 x = f − 1 ( y ) x=f^{-1}(y) x=f1(y)
  2. 对于 y = f ( g ( x ) ) y=f(g(x)) y=f(g(x))的反函数相关问题,经常考虑变量替换 t = g ( x ) , t = f − 1 ( y ) t=g(x),\quad t=f^{-1}(y) t=g(x),t=f1(y)

证明题的2个奇招(事实上,有时这一问虽然不是证明题,但是中间步骤需要证明某个性质(如证明数列有界),也可以用下面这两个方法):

  1. 反证法

    反证法好在它可以额外创造一个条件

  2. 数学归纳法

    有时会有一种特殊情况:即要证明递推一个已知的式子成立,但是得出这个式子比较困难,此时可以考虑数学归纳法

需要分类的情况,有时会殊途同归。比如要证明一个等式,但是其中需要分类展开讨论,有时候分类之后,都将结果指向了那一个式子。

双参数不等式 f 1 ( a , b ) < f 2 ( a , b ) f_1(a,b)<f_2(a,b) f1(a,b)<f2(a,b)的证明:

一般是转换利用函数的单调性,有两种转换方式:

  1. 选择一个参数作为自变量:如 g 1 ( a ) g_1(a) g1(a)(把 a a a视为变量, b b b视为常数)
  2. 将两个变量归结为一个变量:如 g 2 ( a + b ) g_2(a+b) g2(a+b)

对于含绝对值的不等式,有时令一端为0,可以得到特殊点。

对于不等式 ∣ f ( x ) ∣ ≤ g ( x ) |f(x)| \leq g(x) f(x)g(x),若有 g ( x 0 ) = 0 g(x_0)=0 g(x0)=0,那么有 f ( x 0 ) = 0 f(x_0)=0 f(x0)=0

部分分式法的分母最高次为至多就是二次函数的乘幂:

Q m = a ( x − x 1 ) n 1 ⋯ ( x − x k ) n k ( x 2 + p 1 x + q 1 ) m 1 ⋯ ( x 2 + p s x + q s ) m s Q_m=a(x-x_1)^{n_1} \cdots(x-x_k)^{n_k}(x^2+p_1x+q_1)^{m_1}\cdots(x^2+p_sx+q_s)^{m_s} Qm=a(xx1)n1(xxk)nk(x2+p1x+q1)m1(x2+psx+qs)ms

关于根号的化简技巧:

  1. 1次方差的原地分解:

u n + 1 − u n = ( u n + 1 + u n ) ( u n + 1 − u n ) u_{n+1}-u_n=(\sqrt{u_{n+1}}+\sqrt{u_n})(\sqrt{u_{n+1}}-\sqrt{u_n}) un+1un=(un+1 +un )(un+1 un )

  1. 根号下根号,考虑通过配方消去:

3 + 2 2 = ( 2 + 2 ) 2 = 2 + 2 \sqrt{3+2\sqrt{2}}=\sqrt{(2+\sqrt{2})^2}=2+\sqrt{2} 3+22 =(2+2 )2 =2+2

  1. 1 + sin ⁡ x = ( sin ⁡ x 2 + cos ⁡ x 2 ) 2 \sqrt{1+\sin x}=\sqrt{(\sin \frac{x}{2}+\cos \frac{x}{2})^2} 1+sinx =(sin2x+cos2x)2 的消1去根号法

注意选择题技巧:当要判断函数的性质时,如果多个性质很难判断,有一个很简单,那就先判断那个简单

例:设 f ( x ) = ∫ − 1 x ∣ t ∣ ln ⁡ ∣ t ∣ d t f(x)=\int_{-1}^{x}\sqrt{|t|}\ln |t|dt f(x)=1xt lntdt,则 f ( x ) f(x) f(x) x = 0 x=0 x=0处():

A.极限不存在。B:连续但不可导。C.可导且导数为0。D.可导且导数不为0

解:选项AB是需要求这个积分,而选项CD则仅需要求某点的导数(极限式),而后者的极限式通过洛必达可以轻松去除变上限积分号,比前者简单很多。事实上,选C

1 函数极限与连续

几种常用极限结论:

1 ∞ : lim ⁡ x → 0 ( 1 + x ) 1 x = lim ⁡ x → ∞ ( 1 + 1 x ) x = e ∞ 0 : lim ⁡ x → + ∞ ( 1 + x ) 1 x = lim ⁡ x → 0 + ( 1 + 1 x ) x = 1 0 0 : lim ⁡ x → 0 + x x = 1 lim ⁡ x → 0 + ln ⁡ x x → − ∞ , lim ⁡ x → 0 + ln ⁡ ( 1 + x ) x → 1 lim ⁡ n → ∞ ( n 1 + n ) n = 1 e , lim ⁡ n → ∞ ( 1 + n n ) n = e a > 1 ⇒ { lim ⁡ x → 0 + a 1 x → + ∞ lim ⁡ x → 0 − a 1 x → 0 lim ⁡ x → + ∞ a 1 x → 1 lim ⁡ x → − ∞ a 1 x → 1 lim ⁡ n → ∞ a 1 n + a 2 n + ⋯ + a m n n = max ⁡ 1 ≤ i ≤ m a i \begin{aligned} 1^{\infty}:\quad &\lim\limits_{x \rightarrow 0}(1+x)^{\frac{1}{x}}=\lim\limits_{x \rightarrow \infty}(1+\frac{1}{x})^{x}=e\\ \infty ^0:\quad&\lim\limits_{x \rightarrow +\infty}(1+x)^{\frac{1}{x}}=\lim\limits_{x \rightarrow 0^+}(1+\frac{1}{x})^{x}=1\\ 0^0:\quad &\lim\limits_{x \rightarrow 0^+}x^x=1\\ &\lim\limits_{x\rightarrow 0^+}\frac{\ln x}{x}\rightarrow -\infty, \quad \lim\limits_{x\rightarrow 0^+}\frac{\ln (1+x)}{x}\rightarrow1\\ &\lim\limits_{n \rightarrow \infty}(\frac{n}{1+n})^n=\frac{1}{e}, \quad \lim\limits_{n \rightarrow \infty}(\frac{1+n}{n})^n=e\\ &a>1 \Rightarrow\begin{cases} &\lim\limits_{x\rightarrow 0^+}a^{\frac{1}{x}} \rightarrow +\infty\\ &\lim\limits_{x\rightarrow 0^-}a^{\frac{1}{x}} \rightarrow 0\\ &\lim\limits_{x\rightarrow + \infty}a^{\frac{1}{x}} \rightarrow 1\\ &\lim\limits_{x\rightarrow - \infty}a^{\frac{1}{x}} \rightarrow 1\\ \end{cases} \\ &\lim\limits_{n \rightarrow \infty}\sqrt[n]{a_1^n+a_2^n+\cdots+a_m^n}=\max\limits_{1 \leq i \leq m}a_i\\ \end{aligned} 1:0:00:x0lim(1+x)x1=xlim(1+x1)x=ex+lim(1+x)x1=x0+lim(1+x1)x=1x0+limxx=1x0+limxlnx,x0+limxln(1+x)1nlim(1+nn)n=e1,nlim(n1+n)n=ea>1x0+limax1+x0limax10x+limax11xlimax11nlimna1n+a2n++amn =1immaxai

注意上面的一些极限趋近于定常值,但他们只是省略了无穷小项(有时可能不够精确)如:

lim ⁡ x → ∞ ( 1 + 1 x ) x = e 1 − 1 2 x \lim\limits_{x \rightarrow \infty}(1+\frac{1}{x})^x=e^{1-\frac{1}{2x}} xlim(1+x1)x=e12x1

幂指极限:

固 定 极 限 { 0 1 → 0 0 ∞ → 0 1 0 → 1 , 如 lim ⁡ t → 0 ( t + 1 ) t = lim ⁡ t → 0 1 + t ln ⁡ ( t + 1 ) 非 固 定 极 限 { ∞ 0 0 0 1 ∞ \begin{aligned} 固定极限 &\begin{cases} &0^1 \rightarrow 0\\ &0^{\infty} \rightarrow 0\\ &1^0 \rightarrow 1, \quad 如\lim\limits_{t \rightarrow 0}(t+1)^t=\lim\limits_{t \rightarrow 0} 1+t\ln (t+1)\\ \end{cases}\\ 非固定极限 &\begin{cases} &\infty^{0}\\ &0^0\\ &1^{\infty}\\ \end{cases}\\ \end{aligned} 01000101,t0lim(t+1)t=t0lim1+tln(t+1)0001

注意这里面的固定极限在题目中不要随意代入,就比如 1 0 1^0 10,后面就跟了一个无穷小量,和差时有时不可忽略

常用的基本极限:

lim ⁡ x → 0 a x − 1 x = ln ⁡ a , lim ⁡ x → 0 n n = 1 , lim ⁡ x → 0 a n = 1 ( a > 0 ) lim ⁡ x → ∞ a n x n + a n − 1 x n − 1 ⋯ + a 1 x + a 0 b m x m + b m − 1 x m − 1 ⋯ + b 1 x + b 0 = { a n b m , n < m 0 , n = m ∞ , n > m lim ⁡ n → ∞ x n = { 0 , ∣ x ∣ < 1 ∞ , ∣ x ∣ > 1 1 , x = 1 不 存 在 , x = − 1 lim ⁡ n → ∞ e n x = { 0 , x < 0 + ∞ , x > 0 1 , x = 0 \begin{aligned} &\lim\limits_{x\rightarrow 0}\frac{a^x-1}{x}=\ln a, \quad \lim\limits_{x\rightarrow 0}\sqrt[n]{n}=1, \quad \lim\limits_{x\rightarrow 0}\sqrt[n]{a}=1(a>0)\\ &\lim\limits_{x\rightarrow \infty}\frac{a_nx^n+a_{n-1}x^{n-1}\cdots+a_1x+a_0}{b_mx^m+b_{m-1}x^{m-1}\cdots+b_1x+b_0}=\begin{cases} \frac{a_n}{b_m},\quad &n<m\\ 0,\quad &n=m\\ \infty,\quad &n>m\\ \end{cases} \\ &\lim\limits_{n\rightarrow \infty}x^n=\begin{cases} 0,\quad &|x|<1\\ \infty,\quad &|x|>1\\ 1,\quad &x=1\\ 不存在,\quad &x=-1\\ \end{cases} \\ &\lim\limits_{n\rightarrow \infty}e^{nx}=\begin{cases} 0,\quad &x<0\\ +\infty,\quad &x>0\\ 1,\quad &x=0\\ \end{cases} \\ \end{aligned} x0limxax1=lna,x0limnn =1,x0limna =1(a>0)xlimbmxm+bm1xm1+b1x+b0anxn+an1xn1+a1x+a0=bman,0,,n<mn=mn>mnlimxn=0,,1,,x<1x>1x=1x=1nlimenx=0,+,1,x<0x>0x=0

1 ∞ 1^{\infty} 1的三部曲:

1. 写 为 标 准 形 式 : 原 式 = lim ⁡ [ 1 + α ( x ) ] β ( x ) 2. 求 极 限 : lim ⁡ α ( x ) β ( x ) = A 3. 写 结 果 : 原 式 = e A \begin{aligned} 1.写为标准形式:\quad&原式=\lim[1+\alpha(x)]^{\beta(x)}\\ 2.求极限:\quad& \lim \alpha(x)\beta(x)=A\\ 3.写结果:\quad&原式=e^A \end{aligned} 1.:2.:3.:=lim[1+α(x)]β(x)limα(x)β(x)=A=eA

如果 lim ⁡ α ( x ) β ( x ) = A \lim \alpha(x)\beta(x)=A limα(x)β(x)=A的极限不好求,可以做一些变换,比如求 lim ⁡ 1 α ( x ) β ( x ) \lim \frac{1}{\alpha(x)\beta(x)} limα(x)β(x)1的极限

多项式分式求 x → ∞ x \rightarrow\infty x的极限,看最高次项的系数;

多项式分式求 x → 0 x \rightarrow0 x0的极限,看最低次项的系数;

对于极限:

存 在 + 存 在 = 不 存 在 不 存 在 + 不 存 在 = 不 一 定 \begin{aligned} 存在+存在&=不存在\\ 不存在+不存在&=不一定 \end{aligned} ++==

等价无穷小的代换原则:

  1. 乘、除可以换:

    α ∼ α 1 , β ∼ β 1 \alpha \sim \alpha_1,\quad\beta \sim \beta_1 αα1,ββ1,则:

    lim ⁡ α β = lim ⁡ α 1 β 1 \lim\frac{\alpha}{\beta}=\lim\frac{\alpha_1}{\beta_1} limβα=limβ1α1

  2. 加、减关系在一定条件下可以换:

    1. α ∼ α 1 , β ∼ β 1 \alpha \sim \alpha_1,\quad\beta \sim \beta_1 αα1,ββ1 lim ⁡ α 1 β 1 = A ≠ 1 \lim\frac{\alpha_1}{\beta_1}=A \neq1 limβ1α1=A=1,则 α − β ∼ α 1 − β 1 \alpha-\beta \sim\alpha_1-\beta_1 αβα1β1
    2. α ∼ α 1 , β ∼ β 1 \alpha \sim \alpha_1,\quad\beta \sim \beta_1 αα1,ββ1 lim ⁡ α 1 β 1 = A ≠ − 1 \lim\frac{\alpha_1}{\beta_1}=A \neq-1 limβ1α1=A=1,则 α + β ∼ α 1 + β 1 \alpha+\beta \sim\alpha_1+\beta_1 α+βα1+β1

即在两等价无穷小的加减,当且仅当二者和差不为0时可以替换。

PS:注意如果是两个同底数幂相乘,他们的指数实际上是第二种加减的情况,而不能认为是第一种情况(即不能随便换)

变上限积分的等价代换:

f ( x ) f(x) f(x) g ( x ) g(x) g(x) x = 0 x=0 x=0的某领域内连续,且 lim ⁡ x → 0 f ( x ) g ( x ) = 1 \lim\limits_{x \rightarrow 0}\frac{f(x)}{g(x)}=1 x0limg(x)f(x)=1,有:

∫ 0 x f ( t ) d t ∼ ∫ 0 x g ( t ) d t \int_0^xf(t)dt \sim \int_0^xg(t)dt 0xf(t)dt0xg(t)dt

确定极限存在时的参数,应该用这个极限确定参数,即:

对于 lim ⁡ f ( a ) = A , ( A 已 知 , a 未 知 , 求 a ) \lim f(a)=A,\quad(A已知,a未知,求a) limf(a)=A,(Aaa)问题,一般都是对 lim ⁡ f ( a ) \lim f(a) limf(a)问题利用极限知识化简,去极限号求 a a a

由已知极限凑未知极限,一般都是用有理运算法则,从未知中找出已知。

∞ − ∞ \infty -\infty 的式子可以考虑通分,或者提取公因子(不易通分时)

变上限积分的三种处理方法:

  1. 洛必达法则
  2. 等价代换
  3. 积分中值定理

洛必达法则如果求出来极限存在(定常值)或者无穷大时可用,如果不存在则不可用(不包括无穷大)

七种不定式运用洛必达法则的转换规则( 0 0 , ∞ ∞ , 0 ⋅ ∞ , ∞ − ∞ , 1 ∞ , ∞ 0 , 0 0 \frac{0}{0},\frac{\infty}{\infty},0 \cdot \infty,\infty-\infty,1^{\infty},\infty^0,0^0 00,,0,,1,0,00):

$$
\frac{0}{0},\frac{\infty}{\infty}\Leftarrow \begin{cases}
&0\cdot\infty \Leftarrow
\begin{cases}
&1^{\infty}(也可三部曲)\
&\infty^0\
&0^0\
\end{cases}\
&\infty-\infty\

\end{cases}
$$

n阶可导,洛必达只能用到n-1阶数;n阶连续可导,可用n次洛

七种不定式的常用方法:

0 0 { 洛 必 达 等 价 无 穷 小 代 换 泰 勒 公 式 ∞ ∞ { 洛 必 达 分 子 分 母 同 时 除 以 分 子 分 母 各 项 最 高 阶 的 无 穷 大 ∞ − ∞ { 通 分 化 为 0 0 ( 适 合 分 式 差 ) 根 式 有 理 化 ( 适 合 于 低 次 数 的 根 式 差 ) 提 无 穷 因 子 后 等 价 代 换 ( 适 合 于 高 次 数 的 根 式 差 ) 0 ⋅ ∞ : 化 为 0 0 或 ∞ ∞ ( 谁 方 便 化 谁 ) 1 ∞ : 三 部 曲 ∞ 0 , 0 ∞ : 平 底 起 ln ⁡ \begin{aligned} &\frac{0}{0}\begin{cases} &洛必达\\ &等价无穷小代换\\ &泰勒公式\\ \end{cases}\\ &\frac{\infty}{\infty}\begin{cases} &洛必达\\ &分子分母同时除以分子分母各项最高阶的无穷大\\ \end{cases}\\ &\infty-\infty\begin{cases} &通分化为\frac{0}{0}(适合分式差)\\ &根式有理化(适合于低次数的根式差)\\ &提无穷因子后等价代换(适合于高次数的根式差)\\ \end{cases}\\ &0 \cdot \infty:化为\frac{0}{0}或\frac{\infty}{\infty}(谁方便化谁)\\ &1^{\infty}:三部曲\\ &\infty^0,0^\infty:平底起\ln\\ \end{aligned} 00{000:00便1:0,0:ln

注意反三角函数极限的求解,有时会用到逆等价代换:

lim ⁡ n → ∞ n 2 ( arctan ⁡ 1 n − 1 − arctan ⁡ 1 n + 1 ) = lim ⁡ n → ∞ n 2 tan ⁡ ( arctan ⁡ 1 n − 1 − arctan ⁡ 1 n + 1 ) 用 了 x ∼ tan ⁡ x \begin{aligned} \lim\limits_{n \rightarrow \infty}n^2(\arctan \frac{1}{n-1}-\arctan \frac{1}{n+1})=&\lim\limits_{n \rightarrow \infty}n^2\tan(\arctan \frac{1}{n-1}-\arctan \frac{1}{n+1})\\ &用了x \sim \tan x\\ \end{aligned} nlimn2(arctann11arctann+11)=nlimn2tan(arctann11arctann+11)xtanx

对于用泰勒展开式解题,化为和式要比化为乘式更为简单(因为后者比前者多了一个把多项式乘开的操作)

注意事 x → 0 , sin ⁡ x ∼ x x \rightarrow 0, \sin x \sim x x0,sinxx,而不是 sin ⁡ x → 0 , sin ⁡ x ∼ x \sin x \rightarrow 0, \sin x \sim x sinx0,sinxx

x → 0 x \rightarrow0 x0时:

( 1 + x ) α = 1 + α x + α ( α − 1 ) 2 x 2 + ⋯ + α ( α − 1 ) ⋯ ( α − n + 1 ) n ! x n + o ( x n ) tan ⁡ x = x + x 3 3 + o ( x 3 ) arcsin ⁡ x = x + x 3 6 + o ( x 3 ) arctan ⁡ x = x − x 3 3 + o ( x 3 ) ( 1 + x ) x ∼ 1 + x 2 \begin{aligned} &(1+x)^{\alpha}=1+\alpha x+\frac{\alpha(\alpha-1)}{2}x^2+\cdots+\frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}x^n+o(x^n)\\ &\tan x=x+\frac{x^3}{3}+o(x^3)\\ &\arcsin x=x+\frac{x^3}{6}+o(x^3)\\ &\arctan x=x-\frac{x^3}{3}+o(x^3)\\ &(1+x)^x \sim1+x^2\\ \end{aligned} (1+x)α=1+αx+2α(α1)x2++n!α(α1)(αn+1)xn+o(xn)tanx=x+3x3+o(x3)arcsinx=x+6x3+o(x3)arctanx=x3x3+o(x3)(1+x)x1+x2

等价无穷小是十分好用的,但是要求 x → 0 x \rightarrow0 x0,对于有些三角函数,虽然 x x x不趋近于0,但是通过三角函数变换,可以使得其 x → 0 x \rightarrow 0 x0,进而使用等价无穷小:

正弦:

lim ⁡ x → π sin ⁡ ( x ) = − lim ⁡ x → 0 sin ⁡ ( x ) \lim\limits_{x\rightarrow \pi}\sin (x)=-\lim\limits_{x\rightarrow 0}\sin (x) xπlimsin(x)=x0limsin(x)

反正切,这里补充公式 arctan ⁡ ( 1 x ) = arccot x = π 2 − arctan ⁡ x \arctan (\frac{1}{x})=\text{arccot} x=\frac{\pi}{2}-\arctan x arctan(x1)=arccotx=2πarctanx

lim ⁡ x → + ∞ arctan ⁡ x = x = 1 t lim ⁡ t → 0 + arctan ⁡ 1 t = π 2 − lim ⁡ t → 0 + arctan ⁡ t \lim\limits_{ x\rightarrow +\infty}\arctan x\stackrel{x=\frac{1}{t}}=\lim\limits_{t \rightarrow 0^+}\arctan \frac{1}{t}=\frac{\pi}{2}-\lim\limits_{t \rightarrow 0^+}\arctan t x+limarctanx=x=t1t0+limarctant1=2πt0+limarctant

幂运算中,底数总是大于0的,所以原地起 ln ⁡ \ln ln总是可行的

给定 f ( x ) f(x) f(x),让求出 x → 0 x \rightarrow 0 x0时, f ( x ) = b + a k f(x)=b+a^k f(x)=b+ak中的参数 a , b a,b a,b。这种题一般不要想直接通过 f ( x ) f(x) f(x)求极限求出 a , b a,b a,b,很可能 b b b能求出来,但是 a a a被忽略了,正确的做法是针对函数 f ( x ) − b f(x)-b f(x)b求极限

如:设 f ( x ) = 1 x − 1 e x − 1 f(x)=\frac{1}{x}-\frac{1}{e^x-1} f(x)=x1ex11,有 x → 0 x \rightarrow 0 x0时:

$$
\begin{aligned}
&f(x)=\frac{1}{x}-\frac{1}{ex-1}=\frac{ex-1-x}{x(e^x-1)}=\frac{1}{2}\

\end{aligned}
$$

这种只能求出常数项 1 2 \frac{1}{2} 21,但是高阶项被忽略了

求出 f ( x ) − 1 2 f(x)-\frac{1}{2} f(x)21的极限才可求出高阶项

f ( x ) − 1 2 = 1 x − 1 e x − 1 − 1 2 = 2 ( e x − 1 − x ) − x ( e x − 1 ) 2 x ( e x − 1 ) = − x 12 f(x)-\frac{1}{2}=\frac{1}{x}-\frac{1}{e^x-1}-\frac{1}{2}=\frac{2(e^x-1-x)-x(e^x-1)}{2x(e^x-1)}=-\frac{x}{12} f(x)21=x1ex1121=2x(ex1)2(ex1x)x(ex1)=12x

注意当等式一端为常数0时,是不可以除以 Δ x ( x → 0 ) \Delta x(x\rightarrow0) Δx(x0)的,因为这实际上是 0 0 \frac{0}{0} 00问题,出现这种情况就要考虑是不是过早将极限代入(忽略了不该忽略的项),从而出现错误了。

例:求满足 lim ⁡ Δ x → 0 [ Δ x x f ( x + Δ x ) − f ( x ) Δ x − Δ x f ( x ) x 2 ] = lim ⁡ Δ x → 0 f ( 1 + Δ x x ) , f ( 1 ) = 0 \lim\limits_{\Delta x \rightarrow 0}[\frac{\Delta x}{x}\frac{f(x+\Delta x)-f(x)}{\Delta x}-\frac{\Delta xf(x)}{x^2}]=\lim\limits_{\Delta x \rightarrow 0}f(1+\frac{\Delta x}{x}),{\kern 5pt}f(1)=0 Δx0lim[xΔxΔxf(x+Δx)f(x)x2Δxf(x)]=Δx0limf(1+xΔx),f(1)=0的微分方程:

解:正确的为:

lim ⁡ Δ x → 0 [ f ( x + Δ x ) − f ( x ) Δ x − f ( x ) x ] = lim ⁡ Δ x → 0 [ f ( 1 + Δ x x ) − f ( 1 ) Δ x x ] \lim\limits_{\Delta x \rightarrow 0}[\frac{f(x+\Delta x)-f(x)}{\Delta x}-\frac{f(x)}{x}]=\lim\limits_{\Delta x \rightarrow 0}[\frac{f(1+\frac{\Delta x}{x})-f(1)}{\frac{\Delta x}{x}}] Δx0lim[Δxf(x+Δx)f(x)xf(x)]=Δx0lim[xΔxf(1+xΔx)f(1)]

即: y ′ − y x = y ′ ( 1 ) y'-\frac{y}{x}=y'(1) yxy=y(1)。但是如果过于早将 f ( 1 ) = 0 f(1)=0 f(1)=0代入,右端变为0,此时两端便不可同除以 Δ x x \frac{\Delta x}{x} xΔx了,否则则会出现错误的微分方程 y ′ − y x = 0 y'-\frac{y}{x}=0 yxy=0

注意极限有时候可以推出来具体函数值,也可以推出来符号(比如要用零点定理的话,更应该知道函数值正负号)

如: lim ⁡ x → ∞ f ( x ) x = 1 ⇒ 存 在 足 够 大 的 x 1 , 使 得 f ( x 1 ) > 0 \lim\limits_{x \rightarrow \infty}\frac{f(x)}{x}=1 \Rightarrow 存在足够大的x_1,使得f(x_1)>0 xlimxf(x)=1x1使f(x1)>0。如果之前再有 f ( x 0 ) < 0 f(x_0)<0 f(x0)<0,那么由零点定理,就有 f ( ϵ ) = 0 f(\epsilon)=0 f(ϵ)=0

注意斜渐近线的斜率极限不可为0(否则就是水平渐近线了)

注意一种描述”极限不存在“,极限不存在有三种情况:极限为无穷;极限震荡;左右极限不一致

特别需要注意的是,如果极限为0,也是属于极限存在

如:

lim ⁡ x → 0 x f ( x ) − f ( 0 ) x − 0 = 1 \lim\limits_{x \rightarrow 0}\frac{x}{\frac{f(x)-f(0)}{x-0}}=1 x0limx0f(x)f(0)x=1

可以推出来 f ′ ( 0 ) = 0 f'(0)=0 f(0)=0,即极限存在

面对抽象函数极限的常用方法:

  1. 慎用洛必达

    因为有的题目没有说 f ( x ) f(x) f(x)可导,此时不能在某点的邻域内用洛必达

  2. 泰勒公式

关于泰勒公式求极限的运用,除了常用函数的泰勒公式,如果题中给定或者可求函数在同一点的连续导数(如给定了在 x 0 x_0 x0处的 f ( x 0 ) , f ′ ( x 0 ) , f ′ ′ ( x 0 ) , ⋯ f(x_0),f'(x_0),f''(x_0),\cdots f(x0),f(x0),f(x0),),也可以考虑泰勒展开求极限。

例:给出 f ( 0 ) = f ′ ( 0 ) = 0 , f ′ ′ ( 0 ) ≠ 0 , y = f ( x ) 二 阶 可 导 , u = x − f ′ ( x ) f ( x ) , 求 lim ⁡ x → 0 f ( u ) f ( x ) f(0)=f'(0)=0,f''(0)\neq 0,y=f(x)二阶可导,u=x-\frac{f'(x)}{f(x)},求\lim\limits_{x \rightarrow 0}\frac{f(u)}{f(x)} f(0)=f(0)=0,f(0)=0y=f(x),u=xf(x)f(x),x0limf(x)f(u)

解:易有:

lim ⁡ x → 0 f ( u ) f ( x ) = lim ⁡ x → 0 f ( 0 ) + f ′ ( 0 ) u + f ′ ′ ( 0 ) u 2 2 + O ( u 2 ) f ( 0 ) + f ′ ( 0 ) x + f ′ ′ ( 0 ) x 2 2 + O ( x 2 ) = lim ⁡ x → 0 u 2 x 2 \lim\limits_{x \rightarrow 0}\frac{f(u)}{f(x)}=\lim\limits_{x \rightarrow 0}\frac{f(0)+f'(0)u+\frac{f''(0)u^2}{2}+O(u^2)}{f(0)+f'(0)x+\frac{f''(0)x^2}{2}+O(x^2)}=\lim\limits_{x \rightarrow 0}\frac{u^2}{x^2} x0limf(x)f(u)=x0limf(0)+f(0)x+2f(0)x2+O(x2)f(0)+f(0)u+2f(0)u2+O(u2)=x0limx2u2

而易有:

lim ⁡ x → 0 u 2 x 2 = ( 1 2 ) 2 = 1 4 \lim\limits_{x \rightarrow 0}\frac{u^2}{x^2}=(\frac{1}{2})^2=\frac{1}{4} x0limx2u2=(21)2=41

  1. 拉中

    就是平地起导数,即若 f ( x 0 ) = 0 f(x_0)=0 f(x0)=0,那么有 f ( x ) = f ( x ) − f ( x 0 ) = f ( ϵ ) ′ ( x − x 0 ) f(x)=f(x)-f(x_0)=f(\epsilon)'(x-x_0) f(x)=f(x)f(x0)=f(ϵ)(xx0)

对于参数方程 { x = x ( t ) y = y ( t ) \begin{cases} &x=x(t)\\ &y=y(t)\\ \end{cases} {x=x(t)y=y(t)确定的隐函数 f ( x ) f(x) f(x),要求求解含有形如 f ( 1 n ) f(\frac{1}{n}) f(n1)的极限的式子。这种情况下隐函数的具体形式往往很难求,甚至没法求解,可以凑成极限的定义式,进而将 f ( 1 n ) f(\frac{1}{n}) f(n1)转化为 f ′ ( 0 ) f'(0) f(0),后者就可以用参数方程的求导公式求解了

2 数列极限

数列极限不可直接拉格朗日中值定理或者洛必达(n为整数,x可微小数),可以将其转换为对应的函数极限(将n换为x)

n项和的数列极限常用方法:

  1. 夹逼(变化部分是主体的次量级)

    如何夹逼:

    1. 最小:分母变量取最大
    2. 最大:分母变量取最小
  2. 定积分定义(变化部分是主题的同量级,有时需忽略项)

  3. 分项相消

n项连乘的数列极限:

常用方法:

  1. 夹逼
  2. 取对数化为n项和
  3. 消去分子分母的公因子

递推关系 x 1 = a , x n + 1 = f ( x n ) x_1=a,x_{n+1}=f(x_n) x1=a,xn+1=f(xn)定义的数列极限

  1. 常用方法:

    方法一:

    1. 证明极限 lim ⁡ n → ∞ x n \lim\limits_{n \rightarrow \infty}x_n nlimxn存在(利用单调有界)(难点在于如何用单调有界)
    2. lim ⁡ n → ∞ x n = A \lim\limits_{n \rightarrow \infty}x_n=A nlimxn=A,由 A = f ( A ) A=f(A) A=f(A)解得 A A A

    方法二:

    1. lim ⁡ n → ∞ x n = A \lim\limits_{n \rightarrow \infty}x_n=A nlimxn=A,由 A = f ( A ) A=f(A) A=f(A)解得 A A A

    2. 证明 lim ⁡ n → ∞ x n = A \lim\limits_{n \rightarrow \infty}x_n=A nlimxn=A

    3. 单调判断的三种常用方法:

    4. 坐差

    5. { x n } \{x_n\} {xn}不变号的话坐商

    6. 设数列 { x n } \{x_n\} {xn} x 1 = a , x n + 1 = f ( x n ) ( n = 1 , 2 , ⋯   ) x_1=a,x_{n+1}=f(x_n)(n=1,2,\cdots) x1=a,xn+1=f(xn)(n=1,2,)确定:

      • f ( x ) f(x) f(x)单调增,则:

        x 1 < x 2 x_1<x_2 x1<x2时, { x n } \{x_n\} {xn} {} 单调增;否则单调减

      • f ( x ) f(x) f(x)单调减,则 { x n } \{x_n\} {xn}不单调,就无法用单调有界(不用方法一、二)

单调有界不仅可以证明极限存在,也可以证明数列收敛(本身数列收敛就有极限存在的要求在里面)

3 一元函数微分学的概念

4 一元微分学的计算

求函数在0点的高阶导数时,有时可利用“奇函数在0点的函数值为0”去证明该点的值为0

当某点的高阶导数不好直接求时,可以考虑泰勒展开或展开为展开为级数,化为多项式函数方便求导

如: 1 1 + x 2 \frac{1}{1+x^2} 1+x21在0点的高阶导数不好求,就可以转换为 ∑ ( − x 2 ) n \sum\limits_{}^{}(-x^2)^n (x2)n,然后求出导数之后,再代入数值即可

证明函数 f ( x ) f(x) f(x) ( a , b ) (a,b) (a,b)递减,即证明 f ′ ( x ) < 0 f'(x)<0 f(x)<0时,一般做法就是证明 f ′ ( x ) f'(x) f(x)的最大值小于0。

最值点 x 0 x_0 x0可能位置:

  1. 定区间内

    可能要求 f ′ ′ ( x ) f''(x) f(x)

  2. 区间端点处

    当方程 f ′ ( x ) 或 f ′ ′ ( x ) f'(x)或f''(x) f(x)f(x)为0的根十分难求时,要尤为注意到最大值在端点处取得的情况,这时其实压根没必要求出 f ′ ′ ( x ) = 0 f''(x)=0 f(x)=0的根

极坐标也算是参数方程的一种,注意极坐标下二阶导的计算有时直接用公式计算,比转换为直角坐标方程再计算要简单

有一种常见题型就是对于定积分 f ( t ) = ∫ a b f ( x , t ) d x f(t)=\int_a^bf(x,t)dx f(t)=abf(x,t)dx,讨论当 t t t趋近于某一极限时的函数 f ( t ) f(t) f(t)性质,有两种常规做法。

  1. 对函数 f ( x , t ) f(x,t) f(x,t)进行变量替换,将函数 f ( x , t ) f(x,t) f(x,t)仅用一个变量 u u u表示,变成可以变上限积分的形式。
  2. 有时没法这样变换,那么可以考虑是否可以将这个函数积分出来(注意采用分部积分法),求出具体形式,再进行讨论。

例:讨论函数 f ( t ) = ∫ 0 1 ln ⁡ ( x 2 + t 2 ) d x f(t)=\int_0^1 \ln{(x^2+t^2)}dx f(t)=01ln(x2+t2)dx,证明在 t = 0 t=0 t=0处, f ( t ) f(t) f(t)连续但不可导

解:本题中如果进行变量替换 u = x 2 + t 2 u=x^2+t^2 u=x2+t2,那么反解 x x x时,一是会出现正负号,而是积分变为 ± 1 4 ∫ t 2 t 2 + 1 ln ⁡ u 1 u − t 2 d u \pm\frac{1}{4}\int_{t^2}^{t^2+1}\ln u\frac{1}{\sqrt{u-t^2}}du ±41t2t2+1lnuut2 1du,这样也没法当成变上限积分去计算,因此可以考虑本题首先计算出 f ( 0 ) = − 1 f(0)=-1 f(0)=1,之后利用分部积分法计算出 f ( t ) = ln ⁡ 1 + t 2 − 1 + t arctan ⁡ 1 t f(t)=\ln \sqrt{1+t^2}-1+t\arctan\frac{1}{t} f(t)=ln1+t2 1+tarctant1,再讨论这个具体函数的性质

5 一元函数微分学的应用(一)——几何应用

梯度方向是函数值增加最快的方向,梯度负方向是减少最快的方向

注意描述:设某物体沿方程 Z ( x , y ) Z(x,y) Z(x,y)增加最快的方向运动,求物体运动的方程。这种问题就是求解微分方程:

y ′ = d y d x = Z 1 ′ Z 2 ′ y'=\frac{dy}{dx}=\frac{Z_1'}{Z_2'} y=dxdy=Z2Z1

注意函数 F ( x , y ) F(x,y) F(x,y)与圆 C C C相切的内涵:

  1. P P P在函数上
  2. P P P到圆心的距离 d d d等于半径
  3. d d d是函数上的点到圆心的最小距离

所以,这是一个条件极值问题,可以用拉个朗日函数法

例:求 a a a的值,使得圆周 x 2 + ( y − 1 ) 2 = 1 x^2+(y-1)^2=1 x2+(y1)2=1与椭圆 2 3 x 2 + 2 9 y 2 = a 2 ( a > 0 ) \frac{2}{3}x^2+\frac{2}{9}y^2=a^2{\kern 5pt}(a>0) 32x2+92y2=a2(a>0)内相切

解:(PS:这个椭圆的长半轴在y轴上,所以不会在椭圆上顶点相切)

由题意,有拉格朗日函数 L = x 2 + ( y − 1 ) 2 + λ ( 2 3 x 2 + 2 9 y 2 − a 2 ) L=x^2+(y-1)^2+\lambda(\frac{2}{3}x^2+\frac{2}{9}y^2-a^2) L=x2+(y1)2+λ(32x2+92y2a2)有最值1

三项求导后有最值点 ( ± 3 2 ( a 2 − 1 2 ) , 3 2 ) (\pm\sqrt{\frac{3}{2}(a^2-\frac{1}{2})},\frac{3}{2}) (±23(a221) ,23),代入 x 2 + ( y − 1 ) 2 x^2+(y-1)^2 x2+(y1)2,并令其为1,即可解出 a a a

6 一元函数微分学的应用(二)——中值定理、微分等式与微分不等式

中值定理凑函数的公式

  1. 一阶导相关:

f ′ f → ( f 2 ) ′ f ′ + ψ f → ( f e ψ ) ′ { f ′ + f → ( f e x ) ′ f ′ − f → ( f e − x ) ′ f ′ + k f → ( f e k x ) ′ f ′ x − f → ( f x ) ′ f ′ x + f → ( x f ) ′ f ′ f → ( ln ⁡ f ) ′ \begin{aligned} &f'f \rightarrow (f^2)' \\ &f'+\psi f \rightarrow (fe^\psi)' \begin{cases} &f'+f \rightarrow (fe^x)'\\ &f'-f \rightarrow (fe^{-x})'\\ &f'+kf \rightarrow (fe^{kx})'\\ \end{cases} \\ &f'x-f \rightarrow (\frac{f}{x})'\\ &f'x+f \rightarrow (xf)'\\ &\frac{f'}{f} \rightarrow (\ln f)'\\ \end{aligned} ff(f2)f+ψf(feψ)f+f(fex)ff(fex)f+kf(fekx)fxf(xf)fx+f(xf)ff(lnf)

  1. 二阶导相关:

f ′ ′ f + ( f ′ ) 2 → ( f f ′ ) ′ f ′ ′ f − ( f ′ ) 2 → ( f ′ f ) ′ \begin{aligned} &f''f+(f')^2 \rightarrow(ff')'\\ &f''f-(f')^2 \rightarrow(\frac{f'}{f})'\\ \end{aligned} ff+(f)2(ff)ff(f)2(ff)

方程的根的问题:

方程的根的存在性问题,即证明存在 ζ \zeta ζ,使得 f ( ζ ) = 0 f(\zeta)=0 f(ζ)=0,其中 f ( x ) f(x) f(x)为连续函数:

  1. 0点定理(异号的证明可以采用反证法)

    寻找两点 a , b a,b a,b,使得 f ( a ) f ( b ) < 0 f(a)f(b)<0 f(a)f(b)<0,那么就可以用定理

  2. 罗尔定理(多为该方法)

根的个数问题:

  1. 单调证明单根
  2. 罗尔定理推论:若在区间 I I I f ( n ) ( x ) ≠ 0 f^{(n)}(x) \neq0 f(n)(x)=0则方程 f ( x ) = 0 f(x)=0 f(x)=0 I I I上至多有n个实根

证明存在一个点 ζ ∈ ( a , b ) \zeta \in(a,b) ζ(a,b)使 F ( ζ , f ( ζ ) , f ′ ( ζ ) ) = 0 F(\zeta,f(\zeta),f'(\zeta))=0 F(ζ,f(ζ),f(ζ))=0

方法:构造辅助函数用罗尔定理

构造的方法主要有两种:

  1. 分析法(还原法):

    根据欲证的结论 F ( ζ , f ( ζ ) , f ′ ( ζ ) ) = 0 F(\zeta,f(\zeta),f'(\zeta))=0 F(ζ,f(ζ),f(ζ))=0的分析,确定 g ( x ) g(x) g(x),使得 g ( x ) = F ( ζ , f ( ζ ) , f ′ ( ζ ) ) g(x)=F(\zeta,f(\zeta),f'(\zeta)) g(x)=F(ζ,f(ζ),f(ζ))

  2. 微分方程法:

    求微分方程 F ( ζ , f ( ζ ) , f ′ ( ζ ) ) = 0 F(\zeta,f(\zeta),f'(\zeta))=0 F(ζ,f(ζ),f(ζ))=0的通解 H ( x , y ) = C H(x,y)=C H(x,y)=C,再设辅助函数 g ( x ) = H ( x , y ) g(x)=H(x,y) g(x)=H(x,y)

证明存在两个点 ζ , η ∈ ( a , b ) \zeta,\eta \in(a,b) ζ,η(a,b)使 F ( ζ , η , f ( ζ ) , f ( η ) , f ′ ( ζ ) , f ′ ( η ) ) = 0 F(\zeta,\eta,f(\zeta),f(\eta),f'(\zeta),f'(\eta))=0 F(ζ,η,f(ζ),f(η),f(ζ),f(η))=0(主要是必须有 f ′ ( ζ ) , f ′ ( η ) f'(\zeta),f'(\eta) f(ζ),f(η),前面无所谓)。

方法:

  1. 不要求 ζ ≠ η \zeta \neq \eta ζ=η:

在同一区间 [ a , b ] [a,b] [a,b]上用两次中值定理(拉中,柯中)(关键是拉中还是柯中)

  1. 要求 ζ ≠ η \zeta \neq \eta ζ=η:

    将区间 [ a , b ] [a,b] [a,b]分为两个子区间,在两个子区间上分别用拉中(关键是如何分区间)

最值点与导数为0的点:

有时可利用“闭连函数必有最值,不在端点,就在内部”,来证明闭连函数在闭区间内有导数为0的点。

有时也可直接利用这个性质取最值点 ζ \zeta ζ,使得 f ( ζ ) = M , f ′ ( ζ ) = 0 f(\zeta)=M,\quad f'(\zeta)=0 f(ζ)=M,f(ζ)=0

如果题目中明确给出了最大(小)值点,那么同时给了一、二阶导信息

证明 f ( x ) ≡ A f(x)\equiv A f(x)A,就是证明 f ′ ( x ) ≡ 0 f'(x)\equiv 0 f(x)0,而关于后者的证明有两个思路

  1. 考虑证明 f ′ ( x ) f'(x) f(x)在整个区间上的每一个点都为0
  2. 仅考虑 f ′ ( x ) f'(x) f(x)最大最小值,证明二者均为0,则整体为0。

要证明存在不同的 ζ 1 , ζ 2 \zeta_1,\quad\zeta_2 ζ1,ζ2,使得 f ( ζ 1 ) = f ( ζ 2 ) = 0 f(\zeta_1)=f(\zeta_2)=0 f(ζ1)=f(ζ2)=0一种思路:

构造原函数 F ( x ) = ∫ 0 x f ( t ) d t F(x)=\int_0^xf(t)dt F(x)=0xf(t)dt,且 F ( a ) = F ( b ) = F ( c ) F(a)=F(b)=F(c) F(a)=F(b)=F(c),那么三值相等两次罗尔即可

出现”存在二阶导 f ′ ′ ( η ) f''(\eta) f(η)

  1. 泰展

  2. 连用两次中值定理,且第二次用第一次的端点:

    f ( x ) − f ( 0 ) = x f ′ ( ζ ) f ′ ( x ) − f ′ ( ζ ) = ( x − ζ ) f ′ ′ ( η ) \begin{aligned} &f(x)-f(0)=xf'(\zeta)\\ &f'(x)-f'(\zeta)=(x-\zeta)f''(\eta)\\ \end{aligned} f(x)f(0)=xf(ζ)f(x)f(ζ)=(xζ)f(η)

哪个方法简单用哪个(中值定理需要知道具体点的函数值信息,如果这样的点比较少,就可以考虑泰展)

双中值问题:

双中值 ζ 1 , ζ 2 \zeta_1,\zeta_2 ζ1,ζ2可能仅仅是取了一个值将初始区间分为了两半,然后再在这两半上分别用泰展或者中值定理

  1. 用泰展:

    确定区间为 ( a , b ) (a,b) (a,b),给定 f ( x 0 ) , f ( a ) , f ( b ) f(x_0),f(a),f(b) f(x0),f(a),f(b)的函数值和其它信息,如果出现二阶双中值 ζ 1 , ζ 2 \zeta_1,\zeta_2 ζ1,ζ2,可以考虑以下方法:

    展开为二阶的泰展为: f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + f ′ ′ ( η ) 2 ( x − x 0 ) 2 f(x)=f(x_0)+f'(x_0)(x-x_0)+\frac{f''(\eta)}{2}(x-x_0)^2 f(x)=f(x0)+f(x0)(xx0)+2f(η)(xx0)2,代入 a , b a,b a,b,有:

    { f ( a ) = f ( x 0 ) + f ′ ( x 0 ) ( a − x 0 ) + f ′ ′ ( ζ 1 ) 2 ( a − x 0 ) 2 f ( b ) = f ( x 0 ) + f ′ ( x 0 ) ( b − x 0 ) + f ′ ′ ( ζ 2 ) 2 ( b − x 0 ) 2 \begin{cases} &f(a)=f(x_0)+f'(x_0)(a-x_0)+\frac{f''(\zeta_1)}{2}(a-x_0)^2\\ &f(b)=f(x_0)+f'(x_0)(b-x_0)+\frac{f''(\zeta_2)}{2}(b-x_0)^2\\ \end{cases} {f(a)=f(x0)+f(x0)(ax0)+2f(ζ1)(ax0)2f(b)=f(x0)+f(x0)(bx0)+2f(ζ2)(bx0)2

    之后将两个式子糅合成一个式子即可(式子之间加减等等)

    特别地,如果对变上限积分 F ( x ) = ∫ a x f ( t ) d t F(x)=\int_{a}^{x}f(t)dt F(x)=axf(t)dt用泰展,需要展开到三阶,才出现 f ( x ) f(x) f(x)二阶导:

    展开为二阶的泰展为: F ( x ) = F ( x 0 ) + F ′ ( x 0 ) ( x − x 0 ) + F ′ ′ ( x 0 ) 2 ( x − x 0 ) 2 + F ′ ′ ′ ( η ) 3 ! ( x − x 0 ) 3 F(x)=F(x_0)+F'(x_0)(x-x_0)+\frac{F''(x_0)}{2}(x-x_0)^2+\frac{F'''(\eta)}{3!}(x-x_0)^3 F(x)=F(x0)+F(x0)(xx0)+2F(x0)(xx0)2+3!F(η)(xx0)3,代入 a , b a,b a,b,有:

    { F ( a ) = F ( x 0 ) + F ′ ( x 0 ) ( a − x 0 ) + F ′ ′ ( x 0 ) 2 ( a − x 0 ) 2 + F ′ ′ ′ ( ζ 1 ) 3 ! ( a − x 0 ) 3 F ( b ) = F ( x 0 ) + F ′ ( x 0 ) ( b − x 0 ) + F ′ ′ ( x 0 ) 2 ( b − x 0 ) 2 + F ′ ′ ′ ( ζ 2 ) 3 ! ( b − x 0 ) 3 \begin{cases} &F(a)=F(x_0)+F'(x_0)(a-x_0)+\frac{F''(x_0)}{2}(a-x_0)^2+\frac{F'''(\zeta_1)}{3!}(a-x_0)^3\\ &F(b)=F(x_0)+F'(x_0)(b-x_0)+\frac{F''(x_0)}{2}(b-x_0)^2+\frac{F'''(\zeta_2)}{3!}(b-x_0)^3\\ \end{cases} {F(a)=F(x0)+F(x0)(ax0)+2F(x0)(ax0)2+3!F(ζ1)(ax0)3F(b)=F(x0)+F(x0)(bx0)+2F(x0)(bx0)2+3!F(ζ2)(bx0)3

    如果下式减上式,等式左侧变为 F ( b ) − F ( a ) = ∫ a b f ( t ) d t F(b)-F(a)=\int_{a}^{b}f(t)dt F(b)F(a)=abf(t)dt,所以如果题目中给出了定区间上的积分值,则考虑用这种方法

  2. 用中值定理

    确定区间为 ( a , b ) (a,b) (a,b),给定 f ( x 0 ) , f ( a ) , f ( b ) f(x_0),f(a),f(b) f(x0),f(a),f(b)的函数值和其它信息,如果出现一阶双中值 ζ 1 , ζ 2 \zeta_1,\zeta_2 ζ1,ζ2,可以考虑以下方法:

    { f ( x 0 ) − f ( a ) = f ′ ( ζ 1 ) ( x 0 − a ) , ζ 1 ∈ ( a , x 0 ) f ( b ) − f ( x 0 ) = f ′ ( ζ 2 ) ( b − x 0 ) , ζ 2 ∈ ( x 0 , b ) \begin{cases} &f(x_0)-f(a)=f'(\zeta_1)(x_0-a), \quad \zeta_1 \in (a,x_0)\\ &f(b)-f(x_0)=f'(\zeta_2)(b-x_0), \quad \zeta_2 \in (x_0,b)\\ \end{cases} {f(x0)f(a)=f(ζ1)(x0a),ζ1(a,x0)f(b)f(x0)=f(ζ2)(bx0),ζ2(x0,b)

    之后将两个式子糅合成一个式子即可(式子之间加减等等)

  3. 双中值合并为单中值

    仅用于同阶数中值相加情况,即: f ( ζ 1 ) + f ( ζ 2 ) = k f(\zeta_1)+f(\zeta_2)=k f(ζ1)+f(ζ2)=k或者 f ′ ( ζ 1 ) + f ′ ( ζ 2 ) = k f'(\zeta_1)+f'(\zeta_2)=k f(ζ1)+f(ζ2)=k等等,

    这里假设有条件 f ′ ′ ( ζ 1 ) + f ′ ′ ( ζ 2 ) = k f''(\zeta_1)+f''(\zeta_2)=k f(ζ1)+f(ζ2)=k,且二阶导闭连,证明该区间存在 ζ \zeta ζ,使得 f ′ ′ ( ζ ) = k 2 f''(\zeta)=\frac{k}{2} f(ζ)=2k

    由于 f ′ ′ ( x ) f''(x) f(x)闭连,故区间上存在最小值,最大值 m , M m,M m,M,即:

    m ≤ f ′ ′ ( ζ 1 ) + f ′ ′ ( ζ 2 ) 2 = k 2 ≤ M m \leq \frac{f''(\zeta_1)+f''(\zeta_2)}{2} =\frac{k}{2}\leq M m2f(ζ1)+f(ζ2)=2kM

    由介值定理,必有 f ′ ′ ( ζ ) = k 2 f''(\zeta)=\frac{k}{2} f(ζ)=2k,使得:

    m ≤ f ′ ′ ( ζ ) = k 2 ≤ M m \leq f''(\zeta)=\frac{k}{2}\leq M mf(ζ)=2kM

    这个值即可以是中值定理求的中值 ζ \zeta ζ,最值点,或者一个确定的常数值(具体求法可以先斩后奏),也可以是题目给出的点

  4. 利用平地中值定理技巧:若 f ( x 0 ) = 0 f(x_0)=0 f(x0)=0 f ( x ) = f ( x ) − f ( x 0 ) = f ( ϵ ) ′ ( x − x 0 ) f(x)=f(x)-f(x_0)=f(\epsilon)'(x-x_0) f(x)=f(x)f(x0)=f(ϵ)(xx0)

    例:已知 ∫ 0 1 1 2 x 2 f ′ ′ ( x ) − f ( x ) d x = 0 \int_{0}^{1}\frac{1}{2}x^2f''(x)-f(x)dx=0 0121x2f(x)f(x)dx=0,且 f ′ ( 1 ) = f ( 1 ) = 0 f'(1)=f(1)=0 f(1)=f(1)=0,试证明0,1之间存在不同的两点使得 ζ 2 f ′ ′ ( ζ ) = 2 f ′ ( η ) ( ζ − 1 ) \zeta^2f''(\zeta)=2f'(\eta)(\zeta-1) ζ2f(ζ)=2f(η)(ζ1)

    解:由积分中值定理有 ζ 2 f ′ ′ ( ζ ) − 2 f ( ζ ) = 0 \zeta^2f''(\zeta)-2f(\zeta)=0 ζ2f(ζ)2f(ζ)=0,进一步有:

    0 = ζ 2 f ′ ′ ( ζ ) − 2 f ( ζ ) = ζ 2 f ′ ′ ( ζ ) − 2 [ f ( ζ ) − f ( 1 ) ] = ζ 2 f ′ ′ ( ζ ) − 2 ( ζ − 1 ) f ′ ( η ) ⇒ ζ 2 f ′ ′ ( ζ ) = 2 f ′ ( η ) ( ζ − 1 ) 0=\zeta^2f''(\zeta)-2f(\zeta)=\zeta^2f''(\zeta)-2[f(\zeta)-f(1)]=\zeta^2f''(\zeta)-2(\zeta-1)f'(\eta) \Rightarrow \zeta^2f''(\zeta)=2f'(\eta)(\zeta-1) 0=ζ2f(ζ)2f(ζ)=ζ2f(ζ)2[f(ζ)f(1)]=ζ2f(ζ)2(ζ1)f(η)ζ2f(ζ)=2f(η)(ζ1)

拉中、柯中的应用区间若是 [ a , x ] [a,x] [a,x],则会出现 f ( x ) − f ( a ) f(x)-f(a) f(x)f(a) f ′ ( ζ ) f'(\zeta) f(ζ),若是知道 f f f的具体形式,有时可以具体反解出 ζ \zeta ζ

区间平移技巧:

  1. ζ ∈ ( a , b ) \zeta\in(a,b) ζ(a,b),则 a + ζ ( b − a ) ∈ ( 0 , 1 ) a+\zeta(b-a) \in(0,1) a+ζ(ba)(0,1)
  2. θ ∈ ( 0 , x ) \theta\in(0,x) θ(0,x),则 0 + θ ( x − 0 ) = θ x ∈ ( 0 , 1 ) 0+ \theta(x-0)=\theta x \in (0,1) 0+θ(x0)=θx(0,1)

运用中值定理之前有时需要对函数进行变形化简

微分方程构造辅助函数:

范围:仅适用于一阶罗尔,且是“最后的保底”

即对一阶及可降价为一阶的微分方程:

f ′ ( x ) + p ( x ) f ( x ) = q ( x ) f'(x)+p(x)f(x)=q(x) f(x)+p(x)f(x)=q(x)

这种情况下构造的辅助函数为

F ( x ) = e ∫ p ( x ) d x f ( x ) − ∫ e ∫ p ( x ) d x q ( x ) d x F(x)=e^{\int p(x)dx}f(x)-\int e^{\int p(x)dx}q(x)dx F(x)=ep(x)dxf(x)ep(x)dxq(x)dx

高数的凸函数是上凸函数

注意有一类特殊的积分不等式证明。即在区间 [ a , b ] [a,b] [a,b]的积分 ∫ a b \int_{a}^{b} ab,最终要证明 某 个 数 ≤ k ( b − a ) 2 某个数 \leq k(b-a)^2 k(ba)2。这种问题可以考虑处理放缩后出现分积分区间:

∫ a b = ∫ a a + b 2 + ∫ a + b 2 b ≤ ∫ a a + b 2 ( x − a ) d x + ∫ a + b 2 b ( b − x ) d x = ( b − a ) 2 8 \int_{a}^{b}=\int_{a}^{\frac{a+b}{2}}+\int_{\frac{a+b}{2}}^{b} \leq \int_{a}^{\frac{a+b}{2}}(x-a)dx+\int_{\frac{a+b}{2}}^{b}(b-x)dx=\frac{(b-a)^2}{8} ab=a2a+b+2a+bba2a+b(xa)dx+2a+bb(bx)dx=8(ba)2

对于给定定值积分与高阶导不等式,除了考虑定义变上限积分,并结合中值定理将二者结合起来。也可以考虑泰勒展开至高阶导,然后整体代入这个积分式,化简运算。如:

例:设函数 f ( x ) f(x) f(x) [ 0 , 1 ] [0,1] [0,1]上具有二阶连续导数,且 f ′ ′ ( x ) > 0 f''(x)>0 f(x)>0,若 ∫ 0 1 f ( x 2 ) d x = 0 \int_{0}^{1}f(x^2)dx=0 01f(x2)dx=0,求 a a a为多少时,必有 f ( a ) < 0 f(a)<0 f(a)<0

解:将 f ( x 2 ) f(x^2) f(x2) a a a处泰勒展开并代入 ∫ 0 1 f ( x 2 ) d x = 0 \int_{0}^{1}f(x^2)dx=0 01f(x2)dx=0中,容易得结果。

如果给出的不是具体的端点值,而是端点值的不等式,则考虑寻找另外一个不等式,来利用零点定理。

注意若 f ( x 0 ) = 0 f(x_0)=0 f(x0)=0,有平地起导数的技巧 f ( x ) = f ( x ) − f ( x 0 ) = f ( ϵ ) ′ ( x − x 0 ) f(x)=f(x)-f(x_0)=f(\epsilon)'(x-x_0) f(x)=f(x)f(x0)=f(ϵ)(xx0)

特别地,若 f ( 0 ) = 0 f(0)=0 f(0)=0,则起得悄无声息 f ( x ) = f ( x ) − f ( 0 ) = f ( ϵ ) ′ x f(x)=f(x)-f(0)=f(\epsilon)'x f(x)=f(x)f(0)=f(ϵ)x

例:已知 f ( 0 ) = 0 , f ′ ′ ( x ) < 0 , 试 证 明 F ( x ) = f ( x ) x 为 减 函 数 f(0)=0,f''(x)<0,试证明F(x)=\frac{f(x)}{x}为减函数 f(0)=0,f(x)<0,F(x)=xf(x)

解:

F ′ ( x ) = x f ′ ( x ) − f ( x ) x 2 = x f ′ ( x ) − [ f ( x ) − f ( 0 ) ] x 2 = x f ′ ( x ) − x f ′ ( ϵ ) x 2 F'(x)=\frac{xf'(x)-f(x)}{x^2}=\frac{xf'(x)-[f(x)-f(0)]}{x^2}=\frac{xf'(x)-xf'(\epsilon)}{x^2} F(x)=x2xf(x)f(x)=x2xf(x)[f(x)f(0)]=x2xf(x)xf(ϵ)

由于 f ′ ( x ) 递 减 , 且 0 < x < ϵ f'(x)递减,且0<x<\epsilon f(x)0<x<ϵ,故 F ( x ) F(x) F(x)为减函数

关于积分不等式的证明:

  1. 一般常化为一端为单独积分,另一端为0的形式
  2. 证明积分不等式 ∫ > 0 \int_{}^{}>0 >0的一般着眼点为讨论被积函数,或将积分变为变上限积分,用极值相关知识

例:设 f ( x ) f(x) f(x) [ 0 , a ] ( a > 0 ) [0,a]{\kern 5pt}(a>0) [0,a](a>0)上有二阶连续导数,且 f ( x ) ≥ 0 , f ( 0 ) = 0 , f ′ ′ ( x ) > 0 , ( x ˉ , y ˉ ) f(x) \geq0,f(0)=0,f''(x)>0,(\bar x,\bar y) f(x)0,f(0)=0,f(x)>0,(xˉ,yˉ)为平面区域 D = { ( x , y ) ∣ 0 ≤ x ≤ a , 0 ≤ y ≤ f ( x ) } D=\{(x,y)|0\leq x \leq a,0 \leq y \leq f(x)\} D={(x,y)0xa,0yf(x)}的形心坐标,证明 x ˉ > 2 3 a \bar x >\frac{2}{3}a xˉ>32a

解:代入形心基本公式并变形:

x ˉ = ∬ D x d x d y ∬ D d x d y > 2 3 a ⇒ ∫ 0 a ( x − 2 3 a ) f ( x ) d x > 0 \bar x =\frac{\iint\limits_Dxdxdy}{\iint\limits_Ddxdy}>\frac{2}{3}a \Rightarrow \int_{0}^{a}(x-\frac{2}{3}a)f(x)dx>0 xˉ=DdxdyDxdxdy>32a0a(x32a)f(x)dx>0

即仅需证明 ∫ 0 a ( x − 2 3 a ) f ( x ) d x > 0 \int_{0}^{a}(x-\frac{2}{3}a)f(x)dx>0 0a(x32a)f(x)dx>0即可

考虑变限积分 F ( x ) = ∫ 0 x ( t − 2 3 x ) f ( t ) d t F(x)=\int_{0}^{x}(t-\frac{2}{3}x)f(t)dt F(x)=0x(t32x)f(t)dt,易有 F ( 0 ) = 0 F(0)=0 F(0)=0,而 a > 0 a>0 a>0,要证 F ( a ) > 0 F(a)>0 F(a)>0,故考虑证明 F ( x ) F(x) F(x)增减性。易有:

F ′ ( x ) = 1 3 x f ( x ) − 2 3 ∫ 0 x f ( t ) d t , F ′ ( 0 ) = 0 F ′ ′ ( x ) = 1 3 x f ′ ( x ) − 1 3 f ( x ) = 1 3 x f ′ ( x ) − 1 3 [ f ( x ) − f ( 0 ) ] = 1 3 x f ′ ( x ) − 1 3 x f ′ ( ϵ ) \begin{aligned} &F'(x)=\frac{1}{3}xf(x)-\frac{2}{3}\int_{0}^{x}f(t)dt,{\kern 5pt}F'(0)=0\\ &F''(x)=\frac{1}{3}xf'(x)-\frac{1}{3}f(x)=\frac{1}{3}xf'(x)-\frac{1}{3}[f(x)-f(0)]=\frac{1}{3}xf'(x)-\frac{1}{3}xf'(\epsilon)\\ \end{aligned} F(x)=31xf(x)320xf(t)dt,F(0)=0F(x)=31xf(x)31f(x)=31xf(x)31[f(x)f(0)]=31xf(x)31xf(ϵ)

由于 0 < ϵ < x , f ′ ′ ( x ) > 0 0<\epsilon<x,f''(x)>0 0<ϵ<x,f(x)>0,故 F ′ ′ ( x ) > 0 F''(x)>0 F(x)>0,进而可推得 F ( x ) F(x) F(x)

  • 6
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值