1 行列式
普通矩阵乘以对角阵:
∣ a b c d e f g h i ∣ ⋅ ∣ λ 1 0 0 0 λ 2 0 0 0 λ 3 ∣ = ∣ a λ 1 b λ 2 c λ 3 d λ 1 e λ 2 f λ 3 g λ 1 h λ 2 i λ 3 ∣ \left|\begin{array}{ccc} a&b&c\\ d&e&f\\ g&h&i\\ \end{array}\right | \cdot \left|\begin{array}{ccc} \lambda_1&0&0\\ 0&\lambda_2&0\\ 0&0&\lambda_3\\ \end{array}\right |= \left|\begin{array}{ccc} a\lambda_1&b\lambda_2&c\lambda_3\\ d\lambda_1&e\lambda_2&f\lambda_3\\ g\lambda_1&h\lambda_2&i\lambda_3\\ \end{array}\right | ∣∣∣∣∣∣adgbehcfi∣∣∣∣∣∣⋅∣∣∣∣∣∣λ1000λ2000λ3∣∣∣∣∣∣=∣∣∣∣∣∣aλ1dλ1gλ1bλ2eλ2hλ2cλ3fλ3iλ3∣∣∣∣∣∣
等式两端均是抽象矩阵相乘式,可考虑等式两端同时取绝对值
求行列式形式的多项式函数 f ( x ) = 0 f(x)=0 f(x)=0的 x n x^n xn的系数,可以考虑逆序展开
特别地,如果是求常数项,那么可以直接求 f ( 0 ) f(0) f(0)
∣ 0 1 1 ⋯ 1 1 0 1 ⋯ 1 1 1 0 ⋯ 1 ⋮ ⋮ ⋮ ⋯ ⋮ 1 1 1 ⋯ 0 ∣ = ( − 1 ) r − 1 ( r − 1 ) \left|\begin{array}{ccccc} 0&1&1&\cdots &1\\ 1&0&1&\cdots &1\\ 1&1&0&\cdots &1\\ \vdots&\vdots&\vdots&\cdots &\vdots\\ 1&1&1&\cdots &0\\ \end{array}\right | =(-1)^{r-1}(r-1) ∣∣∣∣∣∣∣∣∣∣∣011⋮1101⋮1110⋮1⋯⋯⋯⋯⋯111⋮0∣∣∣∣∣∣∣∣∣∣∣=(−1)r−1(r−1)
注意 E = A A − 1 E=AA^{-1} E=AA−1,有时可以用于求抽象行列式
如:已知 A = P − 1 B P A=P^{-1}BP A=P−1BP,且知道 B B B,但是不知道 E E E,照样可以求出 ∣ A − E ∣ |A-E| ∣A−E∣
∣ A − E ∣ = ∣ P − 1 B P − P − 1 P ∣ = ∣ B − E ∣ |A-E|=|P^{-1}BP-P^{-1}P|=|B-E| ∣A−E∣=∣P−1BP−P−1P∣=∣B−E∣
注意伴随矩阵的式子是 A A ∗ = A ∗ A = ∣ A ∣ E AA^*=A^*A=|A|E AA∗=A∗A=∣A∣E,所以不可逆矩阵 A A A也是存在伴随矩阵的,只不过不能通过 A ∗ = ∣ A ∣ A − 1 A^*=|A|A^{-1} A∗=∣A∣A−1,而应该通过 A ∗ A^* A∗的定义求解( { A i j } \{A_{ij}\} { Aij}的转置矩阵)
2 余子式和代数余子式的计算
计算代数余子式的连加式:
-
计算某一行的代数余子式和
如:计算3阶矩阵 A A A的 A 11 + A 12 + A 13 A_{11}+A_{12}+A_{13} A11+A12+A13,可以考虑将矩阵 A A A的第一行全换为1,得到矩阵 A ′ A' A′。那么有行列式展开定理,即有 ∣ A ′ ∣ = A 11 + A 12 + A 13 |A'|=A_{11}+A_{12}+A_{13} ∣A′∣=A11+A12+A13
-
计算所有代数余子式的和
一般是直接计算伴随矩阵,然后计算伴随矩阵各元素的和。硬要对每一行用方法1往往很麻烦
-
计算 ∑ i = 1 n A i i \sum\limits_{i=1}^{n}A_{ii} i=1∑nAii
就是 A ∗ A^* A∗的迹,也是 ∑ λ A ∗ \sum\limits_{}^{}\lambda_{A^*} ∑λA∗
3 矩阵运算
注意 E E E的拼凑技巧:当式子中含有 A − 1 A^{-1} A−1因子时,可考虑将 E E E转换为 A A − 1 AA^{-1} AA−1,方便提项
如: ( 2 A + E ) ( A + 2 E ) − 1 − 2 E = ( 2 A + E ) ( A + 2 E ) − 1 − 2 ( A + 2 E ) ( A + 2 E ) − 1 = ( 2 A + E − 2 A − 4 E ) ( A + 2 E ) − 1 = − 3 ( A + 2 E ) − 1 (2A+E)(A+2E)^{-1}-2E=(2A+E)(A+2E)^{-1}-2(A+2E)(A+2E)^{-1}=(2A+E-2A-4E)(A+2E)^{-1}=-3(A+2E)^{-1} (2A+E)(A+2E)−1−2E=(2A+E)(A+2E)−1−2(A+2E)(A+2E)−1=(2A+E−2A−4E)(A+2E)−1=−3(A+2E)−1
对抽象矩阵 A A A进行行/列操作时,即使 A A A的具体形式未知,为了操作方便,也可具象化地按行/列分块,这样可以更方便的求其与其它量的关系;如果是小题的话,抽像矩阵也可以考虑取特殊矩阵。
拼凑抽象矩阵式子时,注意以下拼凑技巧:
A = B ⇒ A = n n + 1 A + 1 n + 1 B A=B \Rightarrow A=\frac{n}{n+1}A+\frac{1}{n+1}B A=B⇒A=n+1nA+n+11B
抽象式子要证明某抽象矩阵可逆,如果直接凑出 A ⋅ B = C , 且 ∣ C ∣ ≠ 0 A\cdot B=C,且|C| \neq 0 A⋅B=C,且∣C∣=0,那么 A , B A,B A,B都可逆
特别地,抽象式子要证明某抽象矩阵可逆,如果直接凑出 A ⋅ B = E A\cdot B=E A⋅B=E的形式,那么就可以直接得到逆矩阵,自然可逆
拼凑的要求为“恒可逆”,则可考虑将拼凑的一端凑成仅有 E E E,或者已知的可逆矩阵 C C C
当多含抽象向量的矩阵求逆时(如 A = E + α α T A=E+\alpha\alpha^T A=E+ααT),可以考虑自乘建立新式子
注意 A ⋅ A − 1 = E A\cdot A^{-1}=E A⋅A−1=E,而不是1,尤其是填空题( 2 A ⋅ A − 1 = 2 E ≠ 2 2A\cdot A^{-1}=2E \neq 2 2A⋅A−1=2E=2)
注意正交阵有 A T = A − 1 A^T=A^{-1} AT=A−1,这种特殊的性质为求逆矩阵提供的了极大的便利:
比如解方程 A x = b Ax=b Ax=b时,满足条件时有 x = A − 1 b x=A^{-1}b x=A−1b,这种为解方程提供了很大的方便性。
PS:当 A A A的各列/行向量未单位向量,且均彼此正交时, A A A即为正交阵
注意增广矩运算:
若 A 为 m × n 矩 阵 , b 为 m × 1 向 量 , 有 A为m \times n矩阵,b为m \times1向量,有 A为m×n矩阵,b为m×1向量,有:
[ A ∣ b ] T = [ A T b T ] [ A T b T ] x = 0 的 解 必 定 满 足 A T x = 0 \begin{aligned} & [A|b]^T=\left[\begin{array}{c}A^T\\b^T\\\end{array}\right ] \\ & \left[\begin{array}{c}A^T\\b^T\\\end{array}\right ]x=0 的解必定满足A^Tx=0 \\ \end{aligned} [A∣b]T=[ATbT][ATbT]x=0的解必定满足ATx=0
注意若矩阵可逆有 A B = E ⇒ A B = B A = E AB=E \Rightarrow AB=BA=E AB=E⇒AB=BA=E,这有时可以帮助构造新式子,
如: A ( A − 2 B ) = E ⇒ A ( A − 2 B ) = ( A − 2 B ) A ⇒ A B = B A A(A-2B)=E \Rightarrow A(A-2B)=(A-2B)A\Rightarrow AB=BA A(A−2B)=E⇒A(A−2B)=(A−2B)A⇒AB=BA
有结论:
A 实 对 称 ⇔ A − 1 实 对 称 ⇔ A T 实 对 称 A实对称 \Leftrightarrow A^{-1}实对称\Leftrightarrow A^{T}实对称 A实对称⇔A−1实对称⇔AT实对称
4 矩阵的秩
对于向量相乘的矩阵 A = α β T A=\alpha \beta^T A=αβT,若 A A A不是0矩阵,则 r ( A ) = 1 r(A)=1 r(A)=1
注意秩的子式判别法
关于 A − λ E A-\lambda E A−λE的秩的问题:
-
A n × n ∼ Λ A_{n \times n} \sim \Lambda A