scatter_matrix矩阵散点图横纵坐标的直观含义和理解

以boston房价数据集为例子,每个样本有13个特征,画出矩阵散点图:

pd.plotting.scatter_matrix(features, alpha = 0.3, figsize = (14,8), diagonal = 'kde');

对角线部分表示第i个特征的分布,x轴为该特征的值,y轴为该特征的值出现的次数,也就是说这个图表示第i个特征的密度估计。
 

第i行j列的非对角线部分,表示第i个特征与第j个特征的散点图,用于描述这两个特征的相关性。x轴为第j个特征,y轴为第i个特征。

正相关:自变量x变大时,因变量y随之变大;

负相关:自变量x变大时,因变量y随之变小;

不相关:因变量y不随自变量x的变化而变化。

 

可以认为散点图越接近y=x直线时越正相关,越接近y=-x直线时越负相关。

在这里插入图片描述

如果还是拿不准某对特征是否相关的话,可以用pandas的corr函数量化两个特征之间的相关性。

 

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值