DSC和HD医学图像分割评价指标

本文详细介绍了医学图像分割中常用的 Dice 相似系数(DSC)和 Hausdorff_95(95%HD)指标,包括它们的计算方法及在度量闭合区域相似性和集合间距离的应用。通过medpy包实现,适合理解与优化医疗影像处理算法的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

***************************************************

码字不易,收藏之余,别忘了给我点个赞吧!

***************************************************

---------Start

DSC和HD医学图像分割评价指标

1. Dice相似系数(DSC)

DSC(Dice Similarity Cofficient) 用于度量两个集合的相似度,取值范围为[0,1],值越大,表示两个集合越相似。常用在計算闭合区域的相似性。

在这里插入图片描述
计算可调用medpy包
dice = medpy.metric.binary.dc(pred, gt)

*注意:Dice Loss= 1-Dice系数

2. Hausdorff_95 (95% HD)

豪斯多夫距离,计算两个集合之间的距离,值越小,代表两个集合的相似度越高。

计算可调用medpy包
hd95 = medpymetric.binary.hd95(pred, gt)

若需要计算多通道图像之间的HD和DSC,可分别计算各个通道的HD和DSC,然后求平均值。
### 图像分割评估指标概述 图像分割评估指标用于衡量模型预测结果与真实标签之间的相似度。常见的评估指标包括: #### 像素准确率 (Pixel Accuracy) 像素准确率是最简单的评估方法之一,表示被正确分类的像素占总像素的比例[^2]。 \[ \text{Accuracy} = \frac{\sum_{i=1}^{N}\delta(y_i=\hat{y}_i)}{N} \] 其中 \( N \) 是总的像素数量,\( y_i \) \( \hat{y}_i \) 分别代表第 i 个像素的真实类别预测类别,\(\delta\) 函数当两个参数相等时返回 1 否则返回 0。 #### 平均交并比 (mIoU) 平均交并比(mean Intersection over Union, mIoU)是一个广泛使用的评价标准,在多个类别的情况下尤其有用。对于每一个类别 k ,其 IoU 定义如下: \[ \text{IoU}(k)=\frac{|X_k \cap Y_k|}{|X_k \cup Y_k|} \] 这里 \( X_k \) 表示属于类别 k 的真值区域集合;而 \( Y_k \) 则指代由算法得到的对应于该类别的预测区域集。最后通过取所有类别上 IoU 的算术平均值得到最终得分[^1]。 ```python def mean_IoU(pred_mask, true_mask): intersection = np.sum((pred_mask & true_mask)) union = np.sum((pred_mask | true_mask)) if union == 0: return float('nan') iou_score = intersection / union return iou_score.mean() ``` #### Dice 系数 Dice 系数也称为 Sørensen–Dice 指数,它测量的是两个样本集合之间的一致性程度。公式定义为: \[ DSC(X,Y)=\frac{2|X∩Y|}{|X|+|Y|} \] 这个分数范围是从 0 到 1 , 数值越高说明匹配越好。 #### 豪斯多夫距离 (Hausdorff Distance) 豪斯多夫距离用来描述两组点间的最大差异,即一个形状边界上的任意一点到达另一个形状边界的最短路径的最大长度。此度量可以捕捉轮廓偏差情况下的性能变化。 #### 体积相关误差 (Volume Similarity Error) 这一项主要用于三维数据集中,比较目标物体实际体积 V_true 与其估计出来的近似体积 V_pred 差异大小。计算方式通常采用相对百分比形式表达: \[ VS=(V_\text{{true}}−V_\text{{pred}})/[(V_\text{{true}}+V_\text{{pred}})/2]\times100 \% \] 这些不同的评估指标各有侧重,可以根据具体应用场景选择合适的组合来全面反映模型的表现。
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值