最优性理论(无约束)

无约束可微问题

一般形式:minf(x) ,其中 f(x)  为可微函数

我们想要知道这个点是否是函数 f 的一个局部极小解或者全局极小解,需要一个简单的方式来验证一个点是否为极小值点.我们称其为最优性条件,它主要包含一阶最优性条件和二阶最优性条件.

一阶最优性条件

就是运用一阶导数,给出下降方向的定义。

定理(下降方向):

\bigstar  如果存在向量 d 满足 \triangledown f(x)^{T}d<0 , 那么称 d 为 f 在点 x 处的一个下降方向。(利用泰勒公式可以很容易证明出)

我们了解过,既然\triangledown f(x)^{T}d<0,说明梯度方向和向量 d 的夹角应该是大于 90° 的,所以若满足上面的定理,我们沿着下降方向 d前进,使得:f(x + td) < f(x)

x 为局部最优时,就处不能有下降方向,所以引出另一个必要条件如下

定理(一阶必要条件):

如果 x^{*} 是一个局部极小点,那么满足 \triangledown f(x^{*})=0

二阶最优性条件

如果一阶必要条件满足,我们仍然不能确定当前点是否是一个局部极小点.这里考虑使用二阶信息来进一步判断给定点的最优性.

定理(二阶必要条件):

如果 x^{*} 是 f  的一个局部极小点,那么 \triangledown f(x^{*})=0\triangledown ^{2}f(x^{*})> 0

举例说明

举一个线性最小二乘问题:

min f(x)= \frac{1}{2}\left \| b-Ax \right \|_{2}^{2}

可以看出 f(x)  是可微的凸函数,因此,x^{*}  为一个全局最优解当且仅当:

\triangledown f(x^{*})=A^{T}(Ax^{*}-b)=0

我们还经常遇到非线性最小二乘问题:

minf(x)=\sum_{i=1}^{m}r_{i}^{2}(x)=r_{1}^{2}(x)+r_{2}^{2}(x)+...+r_{m}^{2}(x)

其中非线性函数:

  r_{i}(x)=(a_{i}^{T}x)^2-b_{i}^{2}  , i=1,2,...m

所以我们对原式求导:

一阶导:

\bigtriangledown f(x) =2\sum_{i=1}^{m}r_{i}(x)\cdot \bigtriangledown r_{i}(x)

=4\sum_{i=1}^{m}((a_{i}^{T}x)^2-b_{i}^{2})a_{i}^{T}x\cdot a_{i}

二阶导:

 如果 x^{*}  为一个局部最优解,那么其满足一阶必要条件:

\triangledown f(x^{*})=0

 \sum_{i=1}^{m}((a_{i}^{T}x)^2-b_{i}^{2})a_{i}^{T}x\cdot a_{i}=0

以及二阶必要条件:

\triangledown ^{2}f(x^{*})> 0

\sum_{i=1}^{m}(12(a_{i}^{T})^2-4b_{i}^{2})a_{i}a_{i}^{T}>0

如果一个点 x^{a}  满足二阶充分条件:

\bigtriangledown f(x^{a})=0  , \bigtriangledown ^{2}f(x^{a})>0

那么 x^{a}  为一个局部最优解.

(以上基本在高数中都学过)

无约束不可微问题(重点)

一般形式:minf(x) ,其中 f(x)  为不可微函数

很多实际问题的目标函数不是光滑的,例如 L1 范数,f(x)=\left \| x \right \|_{1},对于此类问题,由于目标函数可能不存在梯度和海瑟矩阵,此时我们必须使用其他最优性条件来判断不可微问题的最优点.

凸优化问题一阶充要条件

对于目标函数是凸函数的情形,我们已经引入了次梯度的概念并给出了其计算法则,就需要用次梯度来构造最优性条件。

定理:

假设 f  是适当且凸的函数,当:  {\color{Red} 0\in \partial f(x^{*})}   时,x^{*} 为全局极小点。

0\in \partial f(x^{*})  是  x^{*}  为全局最优解的充要条件(其中  \partial f(x^{*})  表示次梯度)

 复合优化问题的一阶必要条件

在实际问题中,目标函数不一定是凸函数,但它可以写成一个光滑函数与一个非光滑凸函数之和,一般形式:

min \psi (x)=f(x)+h(x)

其中 f 为光滑函数(可能非凸),h  为凸函数(可能非光滑)

定理:

令  x^{*} 为一个局部极小点,那么有:{\color{Red} -\bigtriangledown f(x^{*})\in \partial h(x^{*})} 

举例说明

举一个 L1范数的问题,其一般形式可以写成:

min\psi (x)=f(x)+\mu \left \| x \right \|_{1}

其中 f 为光滑函数,\mu \left \| x \right \|_{1} 一看就是凸函数,不光滑,正则系数 \mu > 0 用来调节解的稀疏度

 看得出  \left \| x \right \|_{1}  那肯定不可微,但是我们可以用次梯度来计算:

 (简单说一下这个次梯度怎么得出来的,这里的 \left \| x \right \|_{1}=\left | x \right |,就是相当于一个y=\left | x \right | 的图像,所以在 x=0 点处,次梯度为集合  [-1,1]

因此,如果 x^{*} 是一个局部最优解,那么其满足:

-\bigtriangledown f(x^{*})\in\mu \partial \left \| x^{*} \right \|_{1}

得出:

 时,x^{*} 就是局部最优解。

进一步地,如果 f(x)  是凸的,那么满足上式的x^{*}就是全局最优解.

  • 1
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值