无约束优化最优性条件

1、一阶必要条件

定义1:设   f ( x )   ~f(x)~  f(x) 在开集   D   ~D~  D 上连续可微,若   x ∗ ∈ D   ~x^*\in D~  xD    min ⁡ x ∈ R n f ( x )   ~\min_{x\in\mathbb{R}^n}f(x)~  xRnminf(x) 
的局部最优解,则   g ( x ∗ ) = 0   ~g(x^*)=0~  g(x)=0 

证明:任给   d ∈ R n   ~d\in\mathbb{R}^n~  dRn ,由局部最优解的定义,对任意充分小的数   t > 0   ~t>0~  t>0 ,有
  f ( x ∗ ) ≤ f ( x ∗ + t d ) = f ( x ∗ ) + t ∇ f ( x ∗ ) T d + o ( t )   ~f(x^*)\le f(x^*+td)=f(x^*)+t\nabla f(x^*)^Td+o(t)~  f(x)f(x+td)=f(x)+tf(x)Td+o(t) 
不等式的两端同时减去   f ( x ∗ )   ~f(x^*)~  f(x) 后除以   t   ~t~  t ,并令   t → 0 +   ~t\rightarrow0^+~  t0+ 可得   ∇ f ( x ∗ ) T d ≥ 0 , ∀ d ∈ R n   ~\nabla f(x^*)^Td\ge0,\forall d\in\mathbb{R}^n~  f(x)Td0,dRn 
特别地令   d = − ∇ f ( x ∗ )   ~d=-\nabla f(x^*)~  d=f(x)     − ∥ ∇ f ( x ) ∥ 2 = −   ∇ f ( x ∗ ) T ∇ f ( x ∗ ) ≥ 0 ~~-\Vert \nabla f(x)\Vert^2=-~\nabla f(x^*)^T\nabla f(x^*)\ge0   f(x)2= f(x)Tf(x)0,
从而   ∇ f ( x ) = 0   ~\nabla f(x)=0~  f(x)=0 
:我们称所求的点   x ∗   ~x^*~  x 为函数   f   ~f~  f 的稳定点(驻点),上述结果也表明无约束优化的局部最优解必是目标函数的稳定点。

2、二阶必要条件

定义2:设   f ( x )   ~f(x)~  f(x) 在开集   D   ~D~  D 上二阶连续可微,若   x ∗ ∈ D   ~x^*\in D~  xD    min ⁡ x ∈ R n   ~\min_{x\in\mathbb{R}^n}~  xRnmin 
的局部最优解,则   g ( x ∗ ) = 0   ~g(x^*)=0~  g(x)=0 ,   G ( x ∗ )   ~G(x^*)~  G(x) 是半正定矩阵

证明   g ( x ∗ ) = 0   ~g(x^*)=0~  g(x)=0 ,上面已经证明,我们只需证明   G ( x ∗ )   ~G(x^*)~  G(x) 半正定矩阵
任给   d ∈ R n   ~d\in\mathbb{R}^n~  dRn ,由局部最优解的定义,对任意充分小的数   t   ~t~  t ,有
f ( x ∗ ) ≤ f ( x ∗ + t d ) = f ( x ∗ ) + 1 2 t 2 d T G ( x ∗ ) d + o ( t 2 ) f(x^*)\le f(x^*+td)=f(x^*)+\frac{1}{2}t^2d^TG(x^*)d+o(t^2) f(x)f(x+td)=f(x)+21t2dTG(x)d+o(t2)
不等式的两端同时减去   f ( x ∗ )   ~f(x^*)~  f(x) 后除以   t   ~t~  t ,并令   t → 0 +   ~t\rightarrow0^+~  t0+ 可得   p T G ( x ∗ ) p ≥ 0   ~p^TG(x^*)p\ge0~  pTG(x)p0 ,故   G ( x ∗ )   ~G(x^*)~  G(x) 半正定矩阵.
:鞍点满足上述条件,但是鞍点既不是极大值点也不是极小值点。

3、二阶充分条件

定义3:设   f ( x )   ~f(x)~  f(x) 在开集   D   ~D~  D 上二阶连续可微,   x ∗ ∈ D   ~x^*\in D~  xD 
  min ⁡ x ∈ R n f ( x )   ~\min_{x\in\mathbb{R}^n}f(x)~  xRnminf(x) 
的局部极小值点的充分条件是   g ( x ∗ ) = 0   ~g(x^*)=0~  g(x)=0 ,   G ( x ∗ )   ~G(x^*)~  G(x) 是正定矩阵
证明:对任意向量   d   ~d~  d    ε   ~\varepsilon~  ε ,有
f ( x ∗ + ε d ) = f ( x ∗ ) + 1 2 d T G ( x ∗ + θ ε d ) d f(x^*+\varepsilon d)=f(x^*)+\frac{1}{2}d^TG(x^*+\theta\varepsilon d)d f(x+εd)=f(x)+21dTG(x+θεd)d
其中   θ ∈ ( 0 , 1 )   ~\theta\in(0,1)~  θ(0,1) .由于   G ( x ∗ )   ~G(x^*)~  G(x) 正定和   f ( x )   ~f(x)~  f(x) 二阶导数矩阵连续,故存在
  δ > 0   ~\delta>0~  δ>0 ,使得   G ( x ∗ + ε d )   ~G(x^*+\varepsilon d)~  G(x+εd)    ∥ ε d ∥ ≤ δ   ~\Vert \varepsilon d\Vert\le\delta ~  εdδ 
范围内正定,所以,   f ( x ∗ + ε d ) > f ( x ∗ )   ~f(x^*+\varepsilon d)>f(x^*)~  f(x+εd)>f(x) ,从而定理成立

  G ( x ∗ )   ~G(x^*)~  G(x) 的正定性保证了函数在   x ∗   ~x^*~  x 处是严格凸的,   g ( x ∗ ) = 0   ~g(x^*)=0~  g(x)=0 保证函数
  f ( x )   ~f(x)~  f(x)    x ∗   ~x^*~  x 处是稳定点.

4、无约束优化凸函数的极值点

定义4:设凸函数   f ( x )   ~f(x)~  f(x) 在开集   D   ~D~  D 上连续可微,则   f   ~f~  f 的局部极小值点也是其全局极小值点。而且,   x ∗   ~x^*~  x 是问题
  min ⁡ x ∈ R n f ( x )   ~\min_{x\in\mathbb{R}^n}f(x)~  xRnminf(x) 
的充要条件   g ( x ∗ ) = 0   ~g(x^*)=0~  g(x)=0 .

证明:先证明   f   ~f~  f 的局部极值点也是全局极值点.设   x ∗   ~x^*~  x    f   ~f~  f 的局部极值点。则存在   x ∗   ~x^*~  x 一个邻域   U ( x ∗ )   ~U(x^*)~  U(x) ,使得
f ( x ) ≥ f ( x ∗ ) ,     ∀   x ∈ U ( x ∗ ) f(x)\ge f(x^*),~~~\forall ~x\in U(x^*) f(x)f(x),    xU(x)
对任意的   x ∈ R n   ~x\in\mathbb{R}^n~  xRn ,当   α > 0   ~\alpha>0~  α>0 充分小时,   x ∗ + α ( x − x ∗ ) ∈ U ( x ∗ )   ~x^*+\alpha (x-x^*)\in U(x^*)~  x+α(xx)U(x) ,则有
f ( x ∗ ) ≤ f ( x ∗ + α ( x − x ∗ ) ) = f ( α x + ( 1 − α ) x ∗ ) ≤ α f ( x ) + ( 1 − α ) f ( x ∗ ) f(x^*)\le f(x^*+\alpha(x-x^*))=f(\alpha x+(1-\alpha)x^*)\le \alpha f(x)+(1-\alpha)f(x^*) f(x)f(x+α(xx))=f(αx+(1α)x)αf(x)+(1α)f(x)
即有   f ( x ) ≥ f ( x ∗ )   ~f(x)\ge f(x^*)~  f(x)f(x) ,故当   f ( x )   ~f(x)~  f(x) 为凸函数时,局部极小值点也是全局极小值点。
再证   f ( x )   ~f(x)~  f(x) 为凸函数,   x ∗   ~x^*~  x 为极小值点的充要条件是   g ( x ∗ ) = 0   ~g(x^*)=0~  g(x)=0 .
必要性由前面可知,是显然的。
  f ( x )   ~f(x)~  f(x)    D   ~D~  D 上为凸函数,即有
f ( x ) ≥ f ( x ∗ ) + g ( x ∗ ) T ( x − x ∗ ) = f ( x ∗ ) ,     ∀ x ∈ D f(x)\ge f(x^*)+g(x^*)^T(x-x^*)=f(x^*),~~~\forall x\in D f(x)f(x)+g(x)T(xx)=f(x),   xD
这表明   x ∗   ~x^*~  x 为整体极小值点


参考书籍
《数值最优化算法与理论》——李董辉
注:参考了倪勤老师与袁亚湘老师的书籍,关于上面的定理的证明虽然本质都差不多,但是个人感觉有点繁琐,所以选择了李董辉老师书上的证明,简洁明了。

  • 0
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

多情剑客无情剑yu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值