冈萨雷斯《数字图像处理》学习笔记(九)形态学图像处理

本文深入探讨了数学形态学在图像处理中的应用,包括集合论基础、二值和灰度形态学的基本运算,如腐蚀、膨胀、开运算、闭运算等,以及形态学图像处理算法,如边界提取、区域填充、骨架提取等。文章还详细解释了结构元素的选择原则和作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

目录

序言

一、集合论基础

1、集合的子集与相等

2、集合的基本运算符

3、集合的反射和平移

二、二值形态学的基本运算

1、腐蚀

2、膨胀

3、膨胀与腐蚀运算的对偶性

3、开运算与闭运算

4、一些基本的形态学算法

三、二值形态学图像处理

1、形态滤波

2、边界提取

3、区域填充

4、骨架提取

5、物体识别

四、灰度形态学基本运算

1、灰度腐蚀   

2、灰度膨胀

3、灰度开运算和灰度闭运算

五、灰度形态学处理算法

1、形态学平衡

2、形态学平衡

3、top—hot变换


序言

形态学图像处理 

将数学形态学作为工具从图像中提取表达和描绘区域形状的有用图像分量,如边界、骨架和凸壳等。最常见的有腐蚀和膨胀、开操作和闭操作、击中和击不中变换。本章一开始将讨论二值图像 的处理,之后将扩展到 灰度图像

形态学图像分析基本步骤

■提出所要描述的物体几何结构模式,即提取几何结构特征;

■根据结构模式选择相应的结构元素(简单又有最强的表现力) ;

■用选定的结构元对图像实行击中与否(HMT,Hit-Miss-Transform)变换,便得到比原始图像更显著突出物体特征信息的图像。如赋予相应变量,还可得到定量描述;

■经过形态学变换后的图像突出我们所需的信息,从而可以方便提取信息。

■综上,HMT是MM图像分析的核心运算。

 

在形态学算法设计中,结构元的选择十分重要,其形状、尺寸的选择是能否有效提取信息的关键。选择的几个基本原则:
■结构元必须在几何上比原图像简单,且有界;
■当选择性质相同或相似的结构元时,以选择极限情况为宜;
■结构元的凸性很重要,对非凸子集,由于连接两点的线段大部分位于集合的外面,故用非凸子集作为结构元将得不到什么信息。

 

数学形态学进行图像处理的基本思想是:用具有一定形态的结构元素探测目标图像,通过检验结构元素在图像目标中的可放性和填充方法的有效性,来获取有关图像形态结构的相关信息,进而达到对图像分析和识别的目的。

一、集合论基础

1、集合的子集与相等

且当且仅当A\subseteq BB\subseteq A同时成立时,称集合A和B集合相等。

2、集合的基本运算符

集合的并

集合的交

集合的补

集合的差

3、集合的反射和平移

集合的反射
由集合A中所有元素相对于原点的反射元素组成的集合称为集合A的反射,记为 \hat{A}

其中x表示集合A中的元素a对应的反射元素。

集合的反射图示:

集合的平移

由集合A中所有元素平移y= (y1, y2) 后组成的元素集合称为集合A的平移,记为$(A)_{y}


其中,x表示集合A中的元素a平移y后形成的元素。

集合平移图示:

二、二值形态学的基本运算

1、腐蚀

设A为目标图像,B为结构元素,则目标图像A被结构元素B腐蚀可定义为:
A\Theta B=\left \{ x|$(B)_{y}\subseteq A \left. \right \} \right.
其中,y是一个表示集合平移的位移量。

腐蚀运算的含义是:每当在目标图像A中找到一个与结构元素B相同的子图像时,就把该子图像中与B的原点位置对应的那个像素位置标注为1,  图像A上标注出的所有这样的像素组成的集合,即为腐蚀运算的结果。简而言之,腐蚀运算的实质就是在目标图像中标出那些与结构元素相同的子图像的原点位置的像素。

注意,结构元素中的原点位置可以不为1,但要求目标图像中的子图像与结构元素B的原点对应的那个位置的像素值是1

腐蚀运算的基本过程是:把结构元素B看作为一个卷积模板,每当结构元素平移到其原点位置与目标图像A中那些像素值为“1”的位置重合时,就判断被结构元素覆盖的子图像的其它像素的值是否都与结构元素相应位置的像素值相同;只有当其都相同时,就将结果图像中的那个与原点位置对应的像素位置的值置为“1”,否则置为0。

注意:当结构元素在目标图像上平移时,结构元素中的任何元素不能超出目标图像的范围。

腐蚀举例:

 

应用:利用腐蚀算法识别物体

2、膨胀

设A为目标图像,B为结构元素,则目标图像A被结构元素B膨胀可定义为:

其中,y是一个表示集合平移的位移量。

 

膨胀的含义:先对结构元素B做关于其原点的反射得到反射集合\widehat{B},  然后再在目标图像A上将\widehat{B}平移y,  则那些\widehat{B}平移后与目标图像A至少有1个非零公共元素相交时对应的\widehat{B}的原点位置所组成的集合,就是膨胀运算的结果。

膨胀运算的基本过程:

(1)求结构元素B关于其原点的反射集合\widehat{B};

(2)每当结构元素\widehat{B}在目标图像A.上平移后,结构元素\widehat{B}与其覆盖的子图像中至少有一个元素相交时,就将目标图像中与结构元素\widehat{B}的原点对应的那个位置的像素值置为“1”, 否则置为0

注意:  (1)当结构元素中原点位置的值是0时,仍把它看作是0;而不再把它看作是1。

          (2)当结构元素在目标图像上平移时,允许结构元素中的非原点像素超出目标图像范围。

膨胀举例:

应用:利用膨胀运算填充目标区域中的小孔

3、膨胀与腐蚀运算的对偶性

即,对目标图像的膨胀运算,相当于对图像背景的腐蚀运算操作;对目标图像的腐蚀运算,相当于对图像背景的膨胀运算操作。

腐蚀运算与膨胀运算的对偶性示例:

3、开运算与闭运算

开运算

使用同一个结构元素对目标图像先进行腐蚀运算,然后再进行膨胀运算称为开运算。

结构元素B对目标图像A的开运算定义为:

举例:

闭运算

使用同一个结构元素对目标图像先进行膨胀运算,然后再进行腐蚀运算称为闭运算。

结构元素B对目标图像A的闭运算定义为:

举例:

 

开运算和闭运算的对偶性

闭运算可以使物体的轮廓线变得光滑,具有磨光物体内边界的作用;而开运算具有磨光图像外边界的作用。

4、一些基本的形态学算法

边界抽取(boundary extraction)

区域填充(region flling)

连接分量提取(extraction of connectedcomponents)

凸壳算法(convex hull)

细化(thinning)

粗化(thickening)

骨架(skeletons)

修剪(pruning)

三、二值形态学图像处理

1、形态滤波

2、边界提取

边界提取示例:

3、区域填充

对细胞图像的区域填充示例:

4、骨架提取

 

变体

1)细化
结果:在不破坏连通性的前提下,细化图像
算法实现:
1)做腐蚀操作,但不立刻删除像素,只打标记;

2)将不破坏连通性的标记点删掉;

3)重复执行,将产生细化结果

2)粗化
结果:  在不合并对象的前提下,粗化图像。
算法实现:
1)做膨胀操作,但不立刻添加像素,只打标记;

2)将不产生对象合并的标记点添加进来;

3)重复执行,将产生粗化结果

另一方案:将图像求反,执行细化,结果再求反

骨架提取实例:

5、物体识别

四、灰度形态学基本运算

       灰度形态学是二值形态学向灰度空间的自然扩展。在灰度形态学中,分别用图像函数f (x, y)和b (x, y)表示二值形态学中的目标图像A和结构元素B,并把f (x, y)称为输入图像,b (x, y)称为结构元素,函数中的(x, y)表示图像中像素点的坐标。
       二值形态学中用到的交和并运算在灰度形态学中分别用最大极值和最小极值运算代替

1、灰度腐蚀   

  在灰度图像中,用结构元素b (x, y)对输入图像f (x, y)进行灰度腐蚀运算可表示为:

(f\Thetab)(s,t) = min{f(s+x,t+ y)-b(x,y)I(s+ x),(t+ y)∈$D_{f};(x,y)∈$D_{b}}

      其中,$D_{f}$D_{b}分别表示f (x, y)和b(x, y)的定义域。x和y必须位于结构元素的定义域之内,而平移参数(s+x)和(t+y)必须位于的f (x, y)的定义域之内。

      与二值图像腐蚀运算不同的是:被移动的是输入图像f (x, y)函数而不是结构元素b (x, y)

      灰度腐蚀运算的特点:灰度腐蚀运算的计算是逐点进行的,  求某点的腐蚀运算结果就是:计算该点局部范围内各点与结构元素中对应点的灰度值之差,并选取其中的最小值作为该点的腐蚀结果。经腐蚀运算后,  图像边缘部分具有较大灰度值的点的灰度会降低,因此,边缘会向灰度值高的区域内部收缩

灰度腐蚀运算示例:

灰度腐蚀运算的一维函数形式:

利用结构元素b (x)对目标图像f (x)的腐蚀过程是:在目标图像的下方“滑动”结构元素,结构元素所能达到的最大值所对应的原点位置的集合即为腐蚀的结果。

腐蚀运算过程示意图:

2、灰度膨胀

在灰度图像中,用结构元素b (x, y)对输入图像f(x,y)进行灰度膨胀运算可表示为: 

其中,$D_{f}$D_{b}分别表示f (x, y)和b (x, y)的定义域。X和y必须位于结构元素的定义域之内,而平移参数(s+x)和(t+y)必须位于的f (x, y)的定义域之内。

需要注意的是:二值膨胀运算中要求目标图像集合和结构元素集合相交至少有一个元素

灰度膨胀运算的特点:灰度膨胀运算的计算是逐点进行的,求某点的膨胀运算结果就是计算该点局部范围内各点与结构元素中对应点的灰度值之和,并选取其中的最大值作为该点的腐蚀结果。经膨胀运算后,图像边缘部分得到了延伸

灰度膨胀运算示例:

灰度膨胀运算的一维函数形式:

膨胀运算过程示意图:

3、灰度开运算和灰度闭运算

灰度开运算
用结构元素b对灰度图像f进行开运算可表示为:
开运算可以通过将求出的所有结构元素的形态学平移都填入目标图像f下方的极大点来计算。如下图几何直观描述:

灰度闭运算
用结构元素b对灰度图像f进行闭运算可表示为:
闭运算可以通过求出所有结构元素的形态学平移与目标图像.上方的极小值点来计算。如下图几何直观描述:

五、灰度形态学处理算法

1、形态学平衡

对添加椒盐噪声的Lena图像的形态学平滑:

2、形态学平衡

使用空间梯度算子对形态学梯度算子对Lena图像进行处理的结果:

3、top—hot变换

 

 

 

本书是数字图像处理经典著作,作者在对32个国家的134个院校和研究所的教师,学生及自学者进行广泛调查的基础上编写了第三版。除保留了第二版的大部分主要内容外,还根据收集的建议从13个方面进行了修订,新增400多幅图像,200多个图表和80多道习题,同时融入了来本科学领域的重要发展,使本书具有相当的特色与先进性。全书分为12章,包括绪论,数字图像基础,灰度变换与空间滤波,频域滤波,图像复原与重建,彩色图像处理,小波及多分辨率处理,图像压缩,形态学图像处理,图像分割,表现与描述,目标识别。 目录编辑 前言15 致谢19 书籍网站20 关于作者21 第1章引言23 1.1什么是数字图像处理?23 1.2数字图像处理的起源25 1.3使用数字图像处理的字段示例29 1.3.1伽马射线成像30 1.3.2 X射线成像31 1.3.3紫外线带成像33 1.3.4可见光和红外波段成像34 1.3.5微波波段40成像 [1] 1.3.6无线电频段的成像42 1.3.7使用其他成像模式的示例42 1.4数字图像处理的基本步骤47 1.5图像处理系统的组件50 摘要53 参考文献和进一步阅读53 第2章数字图像基础知识57 2.1视觉感知的要素58 2.1.1人眼结构58 2.1.2眼睛中的图像形成60 2.1.3亮度适应和歧视61 2.2光和电磁谱65 2.3图像传感和采集68 2.3.1使用单个传感器进行图像采集70 2.3.2使用传感器条带获取图像70 2.3.3使用传感器阵列进行图像采集72 2.3.4简单的图像形成模型72 2.4图像采样和量化74 2.4.1采样和量化的基本概念74 2.4.2代表数字图像77 2.4.3空间和强度分辨率81 2.4.4图像插值87 2.5像素之间的一些基本关系90 2.5.1像素的邻居90 2.5.2邻接,连通性,区域和边界90 [1] 2.5.3距离措施93 2.6数字图像处理中使用的数学工具简介94 2.6.1数组与矩阵运算94 2.6.2线性与非线性操作95 2.6.3算术运算96 2.6.4设置和逻辑操作102 2.6.5空间操作107 2.6.6矢量和矩阵运算114 2.6.7图像变换115 2.6.8概率方法118 [1] 摘要120 参考文献和进一步阅读120 问题121 第3章强度变换和空间过滤126 3.1背景127 3.1.1强度变换和空间滤波的基础127 3.1.2关于本章中的示例129 3.2一些基本的强度转换函数129 3.2.1图像底片130 3。2。2日志转换131 3.2.3幂律(Gamma)变换132 3.2.4分段线性变换函数137 3.3直方图处理142 3.3.1直方图均衡144 3.3.2直方图匹配(规范)150 3.3.3局部直方图处理161 3.3.4使用直方图统计进行图像增强161 3.4空间过滤的基本原理166 3.4.1空间过滤机制167 3.4.2空间相关和卷积168 3.4.3线性滤波的矢量表示172 3.4.4生成空间滤波器掩码173 3.5平滑空间滤波器174 3.5.1平滑线性滤波器174 3.5.2订单统计(非线性)过滤器178 3.6锐化空间滤波器179 3.6.1基金会180 3.6.2使用二阶导数进行图像锐化 - 拉普拉斯算子182 3.6.3反锐化掩码和高增强滤波184 3.6.4使用一阶导数(非线性)图像锐化 - 梯度187 3.7组合空间增强方法191 [1] 3.8使用模糊技术进行强度变换和空间过滤195 3.8.1引言195 3.8.2模糊集理论的原理196 3.8.3使用模糊集200 3.8.4使用模糊集进行强度变换208 3.8.5使用模糊集进行空间过滤211 摘要214 参考文献和进一步阅读214 问题215 第4章频域滤波221 4.1背景222 4.1.1傅立叶级数和变换的简史222 4.1.2关于本章中的示例223 4.2初步概念224 [1] 4.2.1复数224 4.2.2傅立叶级数225 4.2.3冲动及其筛选性能225 4.2.4一个连续变量函数的傅立叶变换227 4.2.5卷积231 4.3采样和采样函数的傅立叶变换233 4.3.1抽样233 4.3.2采样函数的傅立叶变换234 4.3.3抽样定理235 4.3.4别名239 4.3.5采样数据的功能重建(恢复)241 4.4单变量的离散傅里叶变换(DFT)242 4.4.1从采样函数的连续变换中获取DFT 243 4.4.2采样和频率间隔之间的关系245 4.5扩展到两个变量的函数247 4.5.1二维脉冲及其筛选性质247 4.5.2二维连续傅立叶变换对248 [1] 4.5.3二维采样和二维采样定理249 4.5.4图像中的别名250 4.5.5二维离散傅里叶变换及其逆257 4.6二维离散傅立叶变换的一些性质258 4.6.1空间和频率间隔之间的关系258 4.6.2翻译和轮换258 4.6.3周期259 4.6.4对称性属性261 4.6.5傅里叶谱和相角267 4.6.6二维卷积定理271 4.6.7二维离散傅立叶变换特性总结275 4.7频域滤波的基础277 4.7.1频域的附加特性277 4.7.2频域滤波基础279 4.7.3频域滤波步骤摘要285 4.7.4空域和频域过滤之间的对应关系285 4.8使用频域滤波器进行图像平滑291 4.8.1理想的低通滤波器291 4.8.2巴特沃斯低通滤波器295 [1] 4.8.3高斯低通滤波器298 4.8.4低通滤波的其他例子299 4.9使用频域滤波器的图像锐化302 4.9.1理想的高通滤波器303 4.9.2巴特沃斯高通滤波器306 4.9.3高斯高通滤波器307 4.9.4频域308中的拉普拉斯算子 4.9.5反锐化掩模,高增强滤波和高频强调滤波310 4.9.6同态过滤311 4.10选择性过滤316 4.10.1带通和带通滤波器316 4.10.2陷波滤波器316 4.11实施320 4.11.1二维DFT 320的可分离性 4.11.2使用DFT算法计算IDFT 321 [1] 4.11.3快速傅里叶变换(FFT)321 4.11.4关于过滤器设计的一些评论325 摘要325 参考文献和进一步阅读326 问题326 第5章图像恢复和重建333 5.1图像降级/恢复过程的模型334 5.2噪声模型335 5.2.1噪声的空间和频率特性335 5.2.2一些重要的噪声概率密度函数336 5.2.3周期性噪声340 5.2.4噪声参数估算341 5.3仅存在噪声的情况下的恢复 - 空间过滤344 5.3.1平均滤波器344 5.3.2订单统计过滤器347 5.3.3自适应滤波器352 5.4通过频域滤波定期降低噪声357 5.4.1带状过滤器357 [1] 5.4.2带通滤波器358 5.4.3陷波滤波器359 5.4.4最佳陷波滤波360 5.5线性,位置不变的降级365 5.6估算退化函数368 5.6.1通过图像观察估计368 5.6.2通过实验估算369 5.6.3通过建模估算369 5.7反向过滤373 5.8最小均方误差(维纳)滤波374 5.9约束最小二乘滤波379 5.10几何平均滤波器383 5.11从投影中重建图像384 5.11.1引言384 5.11.2计算机断层扫描原理(CT)387 5.11.3投影和Radon变换390 5.11.4傅立叶切片定理396 5.11.5使用平行光束滤波反投影重建397 5.11.6使用扇束滤波反投影进行重建403 摘要409
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值