论文笔记——DISCO:网络嵌入和深度学习联合解决影响力最大化(IM)问题

DISCO: Influence Maximization Meets Network Embedding and Deep Learning

来自西电的一篇待发表的文章。之前的基于神经网络的工作都是用STR模型获取节点的标签,该文章认为这一行为是不够准确的。作为一个NP-hard问题,系欸但那的影响力标签是难以获取的。该文章思路很清晰,将IM问题转化为一个用神经网络求解参数的一个问题 Q Q Q。通过embedding获取节点特征,之后Q将特征结合输入神经网络进行节点影响力最大化问题的求解。

1、基于学习的IM问题的建模

给定同构网络G,IM问题可以建模为:
在这里插入图片描述
由于该问题已经被证明为是一个NP-hard问题,即每个节点的标签难以获取。故基于学习的IM建模为:

在这里插入图片描述
其中 Θ \Theta Θ为满足IM问题的参数集合。该公式可以近似地计算节点的影响力。

2、映射函数的定义

2.1 节点的embedding

使用了Structure2vec的变体。定义如下:
在这里插入图片描述
其中,每个节点的向量被初始化为一个q维的0向量; a v a_v av是一个节点 v v v的表示参数,当 v v v在种子集中 a v = 1 a_v=1 av=1,反之为0; ω ( i , j ) \omega(i,j) ω(i,j)则为节点i和j之间的权重。其中, α 1 , . . . α 4 \alpha_{1},...\alpha_{4} α1,...α4为需要学习的参数。这里迭代一般不超过四次,即最多聚合四跳邻居的信息。

2.2 基于DQN的评估方程

在获得了节点的embedding以后,定义评估方程Q。
在这里插入图片描述
其中 x v I x^{I}_v xvI是节点 v v v I I I次迭代后得到的向量, [ , ] [ , ] [,]表示拼接操作。不难看出,方程与 α 1 \alpha_1 α1~ α 4 \alpha_4 α4, β 1 \beta_1 β1~ β 3 \beta_3 β3紧密相关,这些参数都是需要学习的,这里用 Θ \Theta Θ表示参数集。
总结一下,对于一个网络G,一个种子集大小k,一个种子集S, S ^ = V − S \hat{S}=V-S S^=VS为种子节点候选集,那么用Q为候选集中每个节点计算影响力,之后选择Q值最大的节点加入种子集。

3、模型训练

在这里插入图片描述
其中,损失函数的定义如下:
在这里插入图片描述
其中,R为DQN中的reward,在这里表示种子集影响力的增量:
在这里插入图片描述
γ \gamma γ为当前种子节点的影响力衰减系数,决定了未来reward的占比,这里 γ ∈ [ 0 , 1 ] \gamma \in [0,1] γ[0,1]。在这个loss函数中,前一项为:
在这里插入图片描述
表示为前 δ \delta δ次迭代后得到的种子节点影响力,是目标。后一项为模拟值。值得注意的是,在这里挑选种子节点是,为了遵循 ε − p o l i c y \varepsilon-policy εpolicy(详见原文),这里以概率 ε \varepsilon ε以及 1 − ε 1 - \varepsilon 1ε分别在普通节点和Q值最大的节点中选择种子节点。

4、种子节点的选择

在这里插入图片描述
在这个过程中,Q的迭代只进行一次,关于这一点原文在理论上进行了解释,感兴趣的小伙伴参见原文。至此,该文章算法部分结束。
原文请搜索arXiv:1906.07378v1 [cs.SI] 18 Jun 2019。

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值