13|Excel插件:如何扩展Excel的基本功能?

我们在讲了怎么利用 Python 优化 Excel 的输入和计算效率之后,相信你已经知道该怎么使用 Python 的循环和文件库进行多个文件的处理,怎么使用正则表达式对内容进行查找和替换。

但是有时会因为临时的需求,为了得到查询的结果而进行一次性的表格处理,这时候如果用 Python 来解决,估计你有一种“杀鸡用牛刀”的感觉,未免小题大做了。

所以在接下来的三节课里,会利用 Excel 中自带的插件和更简单的两个脚本工具,来完成这种临时的、简单的重复性任务,让你用更便捷的方式实现办公自动化。

今天这节呢,就介绍一个在 Excel 中非常著名的 Power Query 插件,利用这个插件你可以完成我们经常遇到的数据清理工作。

Power Query 的主要用途

先来介绍一下 Power Query 这个插件。从它的名字,你应该就能猜到它的主要用途,那就是在查询方面对 Excel 进行优化

所说的查询优化是泛指,它的涵盖范围比较广。为了方便使用 Excel 统计数据,往往需要在统计数据前去调整 Excel 表格的格式、内容以及字段类型,这些在 Excel 中统称为查询操作

如果能够把新增数据自动更新到已经处理的数据中,还能自动化地按照之前的操作步骤对表格中的数据进行调整,这就是 Power Query 比手动调整 Excel 更有效率的地方。

在查询大量数据中,最耗时的就是清理数据工作了,具体来说,就是把需要统计的数据从多个文件进行提取和合并,把不符合统计格式的数据进行自动化处理,最终形成符合数据统计的规范格式。

比如:数据被存储到多个文件里,而你需要把多个文件的内容手动合并到一个 Excel 中。再比如:Excel 中的日期包含了年月日和具体时间,如果要按日期汇总这些数据,那你就需要先把年月日和时间拆分。不方便的是,如果表格里的数据更新了,你就必须要重新再手动拆分一遍。

其实这两个例子,代表了清理数据工作中需要自动化最典型的两个场景,那就是文件导入和格式调整。而 Power Query 就是优化这两个主要功能的插件。

那怎么用 Power Query 来优化呢?你需要掌握三个主要步骤,分别是获取数据、转换和加载。只要是用 Power Query 来优化 Excel 的查询,这三个步骤是必须要掌握的。我也再来具体解释一下每个步骤的具体操作。

获取数据,指的是把数据传入 Power Query 的过程。通常我们会新建一个工作簿,把 Excel 打开之后,然后再切换到“数据”选项卡。接着,单击“获取数据”按钮,在下拉菜单中选择“自文件”命令,继续在下一级菜单中选择“从文件夹”命令,通过弹出的“文件夹”对话框,就可以加载文件夹中的所有 Excel 文件了。具体操作示范如下图。

转换,指的是对数据的清理工作。在这一步,你需要把你加载到 Power Query 中的数据从文件到 sheet,再从 sheet 到行列依次处理,对合并好的数据再进行添加、删除列、筛选、添加自定义计算等操作。

这一步是把不符合统计需求的数据调整为符合统计需求数据的最主要操作步骤,也是最繁琐的一步。例如把销售代表字段拆分成姓氏和名字,将订单日期的时间字段去掉,就可以使用转换这一操作来完成。

画一幅图,用来帮你直观理解转换前后的变化,图片如下

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值