构成卷积神经网络(CNN)的基本层:
1卷积层:
- 激活函数(sigmoid、tanh、relu.、Leaky Relu 、pRelu、Maxout...一般用后者多,不再用sigmoid)
各个函数的优点和区别,详见:
CS231n课程笔记翻译:神经网络笔记 1(上) | 课程原文
https://blog.csdn.net/qq_37791134/article/details/82288321
2池化层:
作用:特征融合、降维
无参数需要学习、超参数“尺寸(size)、步长(step)‘’
计算机制:
- 平均池化(Average pooling)
- 最大化池化(Max pooling)
- L2规范池化(这个不确定,请指正)
3全连接层(Fully-connected layer)
对于普通神经网络,最普通的层的类型是全连接层(fully-connected layer)。全连接层中的神经元与其前后两层的神经元是完全成对连接的,但是在同一个全连接层内的神经元之间没有连接。下面是两个神经网络的图例,都使用的全连接层:
左边是一个2层神经网络,隐层由4个神经元(也可称为单元(unit))组成,输出层由2个神经元组成,输入层是3个神经元。右边是一个3层神经网络,两个含4个神经元的隐层。注意:层与层之间的神经元是全连接的,但是层内的神经元不连接。
4批量归一化(Batch Normalization layer)
在标准卷积神经网络中经常用到,作用:可以处理每层internal covariate shfit 内部协变量转变的问题。在激活函数之前使用。
优点:
(1)减少训练时间,使得很深的网络都可以用
少的协变量转变,可使用较大的学习率
少的梯度爆炸和消失(特别在sigmoid、tanh等激活函数中)
(2)学习很少受到初始值的影响
(3)减少过拟合的问题
减少归一化的需要(如dropout)
具体看:https://blog.csdn.net/qq_37791134/article/details/81945620
视频:https://www.youtube.com/watch?v=BZh1ltr5Rkg 李毅宏老师
先放一张Batch Normaliztion的优点:
由卷积层、池化层、全连接层、BN组成但是不一定会全部,但是可能是由上面某几个组合而成。
CNN 发展:
- AlexNet(12年,8层:5层卷积+3全连接层)
- VGG(14年,19层,基层网络,作为高层应用基础性网络,对前基层微调,修改)
- GoogleNet(14年,22层): inceptionV1-V4
split_transfrommerge
- ResNet(15年,152层): ResNet1024-ResNeXt
深度、宽度、基数(cardinality)