旷视暑期实习面经(2019.4.3)
0. 序言
本次的旷视暑期实习是我实习季的第一面,几乎没有任何面试经验,所以总结了一下本次面试的经验、教训,希望可以为将来的实习面、秋招面打下基础。
1. 面试前期准备
本次面试是大学同学帮我内推得到的机会。3.24提交的简历,3.25通过了简历关。本来邮件通知我3.27参加旷视的网上笔试,不过3.26 hr 给我打电话通知我 4.3 直接来参加面试,可能是因为简历写的比较好。
本次面试前大概准备了以下几个方面的内容:
- 深度学习基础知识
- C++语言编程(这部分没啥用,手写算法可以自选语言,用Python就好)
- 算法题
- 项目经历
实际面试的内容几乎都有所准备,但是有一些问题由于紧张或是记得不牢等原因答得不是特别好,后面会具体说一下。
2. 面试流程
本次面试一共两轮,加起来共两小时(10:00~12:00),对体力的消耗还是很大的,所以面试前一定要吃早点。我个人感觉体力还能坚持住。不过据说头条或BAT有三轮或更多的面试,如果有机会参加的话,再写总结吧。
2.1 第一轮面试
第一轮面试是一个年轻的小哥当面试官,问了一些技术问题。
首先被要求自我介绍,我就按照简历上写的内容,大致介绍了一下自己。然后被问了,简历上项目中的内容,都是一些比较基础的问题,比如:项目的数据集是什么、如何进行训练、有哪些成果等。只要是自己做的项目,回答上这些问题应该都不难。
项目问完之后,面试官针对我简历上写的技能,提出了关于深度学习的一些问题。这些也是我面试前主要准备的一些内容,所以自我感觉答得还可以。这些面试官选择的问题应该都是类似的,就是网上常见的深度学习面经里的问题。这次我被问的有:BN 层是什么意思、Resnet 是什么意思、Resnet有哪些改进。第一个问题里,我解释BN层之后,面试官问道,在测试过程中,BN层的参数是怎么确定的。这个我没答上来。面试官提示我思考一下。我解释是用测试样本进行计算的。面试官进一步问,如果用户只是利用API接口,只提供一个样本该怎么确定参数。我回答,根据训练样本确定的参数进行计算。第三个问题,我回答的是 Densenet,然后解释了一下Densenet 的原理。最后面试官问了一下,Densenet 是17年的结果,那么之后又有哪些改进。这个问题我没答上来。深度学习的问题就到这里了。
最后是手写算法。这次的题目是,给定两个正整数 p , q p,q p,q ,返回 p / q p/q p/q的循环小数部分。这个问题本身不难,就是不知道自己写的对不对。。。面试官会在面试结束之后,收走你手写代码的纸,所以不要写的太乱了。
面试的最后,面试官还问我有哪些问题想问。我问了一下,他们组是做什么内容的(人车目标检测相关)、甲方一般是哪些(政府部门、银行等等)。最后他还问了我可以来实习的时间和长度等等只要是实习面试就会问的问题。总体来说,第一轮算是比较顺利,被问的问题都有所准备。
2.2 第二轮面试
第二轮面试应该是leader面,面试官一看就不是很好糊弄的那种。而且事实也是他问了一些非常细节的问题,感觉答得不是很好。如果最后挂了的话,应该也是在这一轮没表现好。
这个面试官没有问深度学习相关的内容,可能是因为他不是做这方面的。他问的几乎全部是我简历中项目的内容。首先,让我介绍了一下我在项目中做了哪些部分的工作(因为我们组就我和导师俩人,所以项目的全部内容差不多都是我做的 -. -||)。然后,问了我们的图像与传统图像有什么区别,数据集是怎么来的,算法原理是啥。到了这一步,他让我写出项目中的公式,然后解释公式的原理。我解释了一下,应该算是表达清楚了。。然后,问我算法是怎么测试的,甲方是怎么验收的,效果怎么样。甲方怎么验收我还真不知道,不过我推说这是军方的项目,他们自己拍图像验收的,效果如何导师没有通知我。应该算是解释过去了。最后他问我,算法是怎么评价的,我答ROC曲线,他又问我ROC的原理和定量评价。我解释了一下原理,定量评价用AUC。然后,他就让我在 O ( n ) O(n) O(n)复杂度下实现计算AUC的函数。。我按照要求写了一下,但是有一些小错误,涉及到TN和PN。面试官有针对这些内容问了我一下,最后还是没有答好。。面试时间到了,这几个问题也不了了之了。
面试官问我有什么问题,我就问了问,他们组做的是什么方向(人脸检测),项目的一般流程是哪些。面试官又问了问我的实习时间、更偏向的方向等等。这些问题就不怎么重要了。
3. 总结
- C++ 是真没啥必要看,手写代码时语言都是自选的,Python就行;
- 深度学习方面,两个面试官都没有在这方面问太多的问题,可能是因为我简历里这方面内容不多的原因;
- 简历上的项目内容非常重要,每一条都要非常熟悉,以防被问到;
- 论文成果是真没啥用,面试官一般也不问,估计是过简历关的标准之一;
- 面试官的问题可以想好了再回答,不要怕让面试官等。想到一半就回答,往往会出错
其他
如果有面试进度更新,我会更新本篇博文。
2019.4.8更新:
面试通过。