1、机器学习
1.1、概念定义
- 计算机从数据中学习出规律和模式,重新组织已有的知识结构使之不断改善自身,以应用在新数据上做预测任务。使计算机具备和人类一样的学习能力。
- 对于某个给定的任务T,在合理的性能度量方案P的前提下,程序可以自主学习任务T的经验E,随着任务的不断进行,经验的积累会带来计算机性能的提升。
- 机器学习的对象:任务,经验,性能。
1.2、机器学习的分类
- 监督学习:如用户点击/购买预测、房价预测 -------(预测标签)
对数据集中的每个样本,使用算法进行预测
回归:预测值是连续的
分类:预测值是离散的 - 非监督学习:如邮件/新闻聚类 -------------------------(预测标签)
- 强化学习:如动态系统以及机器人控制、自动驾驶-----只关心最后的结果(预测结果)
(强化学习:行为认知启发下的机器学习分支,感知环境,做出动作,根据奖惩状态反馈做出调整和选择)