机器学习初步认识与数学理论知识

本文介绍了机器学习的基本概念和分类,并深入探讨了机器学习所需的基础数学知识,包括微积分、导数、泰勒展开、方向导数、梯度和凸函数。此外,还详细讲解了概率论的基础,如古典概型、条件概率、全概率公式、贝叶斯推断以及常见的概率分布,如两点分布、泊松分布、均匀分布和正态分布。最后,简要提及了矩阵和线性代数中的SVD(奇异值分解)。
摘要由CSDN通过智能技术生成

1、机器学习

1.1、概念定义

  • 计算机从数据中学习出规律和模式,重新组织已有的知识结构使之不断改善自身,以应用在新数据上做预测任务。使计算机具备和人类一样的学习能力。

在这里插入图片描述

  • 对于某个给定的任务T,在合理的性能度量方案P的前提下,程序可以自主学习任务T的经验E,随着任务的不断进行,经验的积累会带来计算机性能的提升
  • 机器学习的对象:任务,经验,性能。

在这里插入图片描述

1.2、机器学习的分类

  • 监督学习:如用户点击/购买预测、房价预测 -------(预测标签)
    对数据集中的每个样本,使用算法进行预测
    回归:预测值是连续的
    分类:预测值是离散的
  • 非监督学习:如邮件/新闻聚类 -------------------------(预测标签)
  • 强化学习:如动态系统以及机器人控制、自动驾驶-----只关心最后的结果(预测结果)
    (强化学习:行为认知启发下的机器学习分支,感知环境,做出动作,根据奖惩状态反馈做出调整和选择)
    在这里插入图片描述在这里插入图片描述

2、数学基础

2.1、微积分—夹逼准则

![在这里插入图片描述](https://img-blog.csdnimg.cn/2020072015572989.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzM3ODg3NzY0,size_16,color_FFFFFF,t_70

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值