穹轨转场效果小记

文章详细描述了特效老师如何使用星铁碎玻璃的转场效果,包括模型设置、贴图处理、裂缝模拟以及UE引擎中折射问题的讨论。作者认为原生折射在厚模型上效果不佳,提出将优质折射效果放在post处理的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

特效老师想看看星铁碎玻璃转场的效果做法,所以简单看了下做个小记录

总体大致为上面四步

Step1:

点击进入关卡后的瞬间,拷贝一张屏幕RT

此时屏幕前已放置碎玻璃的模型,有俩层,第一层为主体碎块模型,第二层为碎裂缝隙的面片模型(Step2会提到)

主体玻璃模型的UV闭合时和屏幕UV一致,采样拷贝的RT打底

然后屏幕裂纹和缝隙溢出的效果就是半透面片正常特效做法

Step2:

模型还没出现裂缝的状态

step1状态下的贴图mask调参变化成全屏有裂缝贴图的效果 缝隙溢出特效

Step3:

碎屏之前,玻璃出现裂纹的状态

Step1中的玻璃模型本身是贴合的,而该阶段模型本身就分开做出裂缝。而传入的RT用的模型UV采样就会跟着碎块偏移,所以这个看上去有偏移的效果并非用折射的方式实现,模型碎开偏移本身就会有这样的效果

下一步由于屏幕拷贝的RT只是一个基于屏幕的,碎块模型裂开后理论上是能看到玻璃碎块的侧面的,第二层碎裂缝隙的模型就是为了补充碎块侧面的内容。但是裂缝用到的RT输入也是同一张拷贝的RT,所以可以看到其实这里的缝隙和正面的效果其实是接不上的

而且就算是添加了裂缝的侧面模型,大的裂缝还是会透到后面的场景,所以在玻璃后面又添加了一层面片填补缝隙。场景切换完成后该面片淡出消失,切换碎玻璃Step4界面

继续Step2 材质参数变化显示贴图效果  缝隙溢出特效

Step4:

最后一步炸开来的玻璃模型没有用前三步的模型碎开加动画,而是另外单独的模型动画。Step3结尾大碎块只是一个简单的几帧扩出的动画然后就一帧切Step4

而其基本逻辑和前几步的玻璃一样,也是拿的截屏RT直接写入,所以碎片上的图是跟着走的,貌似还拿了上一帧的RT

然后他们美术自己出了张屏幕偏移的图,屏幕坐标偏移了一点UV就当折射了,其实玻璃的效果不是正常折射的效果。。

嗯 就这样。

但要我说的话,我个人觉得这个效果不是很好,尤其是这个折射的效果。

然后补充一下,如果是UE里面原生的折射方案,如果是用在面片上的话效果还欧克,但是像类似这样带厚度的模型块的话,效果是很不好的。因为UE原生的管线DistortAccumulate和DistortApply的计算是在post中的,正常的半透在post前画的话,SceneColorTexture中就已经存入了半透的结果,最后在distort的时候就会出现半透自身的效果偏移的乱七八糟的情况。

那么解决方案是啥呢~~是否可以考虑把想要优质折射效果的半透放到post里画呢(^.^) 这里就不展开说了~~

内容概要:本文主要介绍了MySQL元数据的概念及其获取方式。MySQL元数据是关于数据库和其对象(如表、列、索引等)的信息,存储在系统表中,这些表位于information_schema数据库中。文章详细列举了多种常用的MySQL元数据查询命令,如查看所有数据库(SHOW DATABASES)、选择数据库(USE database_name)、查看数据库中的所有表(SHOW TABLES)、查看表的结构(DESC table_name)、查看表的索引(SHOW INDEX FROM table_name)、查看表的创建语句(SHOW CREATE TABLE table_name)、查看表的行数(SELECT COUNT(*) FROM table_name)、查看列的信息以及查看外键信息等。此外,还介绍了information_schema数据库中的多个表,包括SCHEMATA表、TABLES表、COLUMNS表、STATISTICS表、KEY_COLUMN_USAGE表和REFERENTIAL_CONSTRAINTS表,这些表提供了丰富的元数据信息,可用于查询数据库结构、表信息、列信息、索引信息等。最后,文章还给出了获取查询语句影响的记录数的Perl和PHP实例,以及获取数据库和数据表列表的方法。 适合人群:对MySQL数据库有一定了解,想要深入学习MySQL元数据获取和使用的数据库管理员或开发人员。 使用场景及目标:①帮助用户掌握MySQL元数据的获取方法,以便更好地管理和维护数据库;②通过查询information_schema数据库中的系统表,深入了解数据库结构、表信息、列信息、索引信息等;③提供Perl和PHP实例,方便用户在不同编程环境中获取查询语句影响的记录数和数据库及数据表列表。 其他说明:在使用上述SQL语句时,请注意将查询中的'your_database_name'和'your_table_name'替换为实际的数据库名和表名。此外,在获取数据库和数据表列表时,如果没有足够的权限,结果将返回null。
经验模态分解(Empirical Mode Decomposition,EMD)是一种基于数据的信号处理技术,由Nigel Robert Hocking在1998年提出,主要用于分析非线性、非平稳信号。它能够将复杂的信号自适应地分解为若干个本征模态函数(Intrinsic Mode Function,IMF),每个IMF代表信号中不同的频率成分和动态特征。在MATLAB环境下实现EMD去噪,通常包括以下步骤: 信号预处理:对原始信号进行预处理,例如平滑处理或去除异常值,以提高后续分解的准确性。 EMD分解:利用EMD算法对预处理后的信号进行分解,将其拆分为多个IMF和一个残余项。每个IMF对应信号的一个内在频率成分,而残余项通常包含低频或直流成分。 希尔伯特变换:对每个IMF进行希尔伯特变换,计算其瞬时幅度和相位,形成希尔伯特谱,从而更直观地分析信号的时频特性。 去噪策略:常见的去噪策略有两种。一种是根据IMF的频率特性,选择保留低频或高频部分,去除噪声;另一种是利用IMF的Hurst指数,噪声IMF的Hurst指数通常较低,因此可以去除Hurst指数低于阈值的IMF。 重构信号:根据保留的IMF和残余项,通过逆希尔伯特变换和累加,重构出去噪后的信号。 Hurst分析:Hurst指数是评估时间序列长期依赖性的指标,用于区分随机性和自相似性。在EMD去噪中,Hurst分析有助于识别噪声IMF,从而提升去噪效果。 在提供的压缩包中,“license.txt”可能是软件的许可协议文件,用户需遵循其条款使用代码。“EMD-DFA”可能是包含EMD去噪和去趋势波动分析(Detrended Fluctuation Analysis,DFA)的MATLAB代码。DFA是一种用于计算信号长期自相关的统计方法,常与EMD结合,进一步分析信号的分形特征,帮助识别噪声并优化去噪效果。该MATLA
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值