集成学习与决策树,随机森林概述

集成学习的第一个问题就是如何得到若干个个体学习器。这里我们有两种选择

I.第一种就是所有的个体学习器都是一个种类的,或者说是同质的。比如都是决策树个体学习器,或者都是神经网络个体学习器

II.第二种是所有的个体学习器不全是一个种类的,或者说是异质的。比如我们有一个分类问题,对训练集采用支持向量机个体学习器,逻辑回归个体学习器和朴素贝叶斯个体学习器来学习,再通过某种结合策略来确定最终的分类强学习器

III.目前来说,同质个体学习器的应用是最广泛的,一般我们常说的集成学习的方法都是指的同质个体学习器。而同质个体学习器使用最多的模型是CART决策树和神经网络。同质个体学习器按照个体学习器之间是否存在依赖关系可以分为两类,第一个是个体学习器之间存在强依赖关系,一系列个体学习器基本都需要串行生成,代表算法是boosting系列算法,第二个是个体学习器之间不存在强依赖关系,一系列个体学习器可以并行生成,代表算法是bagging和随机森林(Random Forest)系列算法。下面就分别对这两类算法做一个概括总结。

boosting的算法原理我们可以用一张图做一个概括如下

Boosting算法的工作机制是首先从训练集用初始权重训练出一个弱学习器1,根据弱学习的学习误差率表现来更新训练样本的权重,使得之前弱学习器1学习误差率高的训练样本点的权重变高,使得这些误差率高的点在后面的弱学习器2中得到更多的重视。然后基于调整权重后的训练集来训练弱学习器2.,如此重复进行,直到弱学习器数达到事先指定的数目T,最终将这T个弱学习器通过集合策略进行整合,得到最终的强学习器

Boosting系列算法里最著名算法主要有AdaBoost算法和提升树(boosting tree)系列算法。提升树系列算法里面应用最广泛的是梯度提升树(Gradient Boosting Tree)

p集成学习之bagging

从上图可以看出,bagging的个体弱学习器的训练集是通过随机采样得到的。通过T次的随机采样,我们就可以得到T个采样集,对于这T个采样集,我们可以分别独立的训练出T个弱学习器,再对这T个弱学习器通过集合策略来得到最终的强学习器

 

对于这里的随机采样有必要做进一步的介绍,这里一般采用的是自助采样法(Bootstrap sampling,即对于m个样本的原始训练集,我们每次先随机采集一个样本放入采样集,接着把该样本放回,也就是说下次采样时该样本仍有可能被采集到,这样采集m次,最终可以得到m个样本的采样集,由于是随机采样,这样每次的采样集是和原始训练集不同的,和其他采样集也是不同的,这样得到多个不同的弱学习器

 

随机森林是bagging的一个特化进阶版,所谓的特化是因为随机森林的弱学习器都是决策树。所谓的进阶是随机森林在bagging的样本随机采样基础上,又加上了特征的随机选择,其基本思想没有脱离bagging的范畴。bagging和随机森林算法的原理在后面的文章中会专门来讲

p集成学习之结合策略

在上面几节里面我们主要关注于学习器,提到了学习器的结合策略但没有细讲,本节就对集成学习之结合策略做一个总结。我们假定我得到的T个弱学习器是{h1,h2,...hT}

p平均法

对于数值类的回归预测问题,通常使用的结合策略是平均法,也就是说,对于若干个弱学习器的输出进行平均得到最终的预测输出

最简单的平均是算术平均,最终预测

如果每个个体学习器有一个权重ww,则最终预测

 

 

其中wiwi是个体学习器hihi的权重,通常有

p集成学习之结合策略

在上面几节里面我们主要关注于学习器,提到了学习器的结合策略但没有细讲,本节就对集成学习之结合策略做一个总结。我们假定我得到的T个弱学习器是{h1,h2,...hT}

p投票法

对于分类问题的预测,我们通常使用的是投票法。假设我们的预测类别是{c1,c2,...cK}{c1,c2,...cK},对于任意一个预测样本x,我们的T个弱学习器的预测结果分别是(h1(x),h2(x)...hT(x))(h1(x),h2(x)...hT(x))

简单的投票法是相对多数投票法,也就是我们常说的少数服从多数,也就是T个弱学习器的对样本x的预测结果中,数量最多的类别cici为最终的分类类别。如果不止一个类别获得最高票,则随机选择一个做最终类别

稍微复杂的投票法是绝对多数投票法,也就是我们常说的要票过半数。在相对多数投票法的基础上,不光要求获得最高票,还要求票过半数。否则会拒绝预测

更加复杂的是加权投票法,和加权平均法一样,每个弱学习器的分类票数要乘以一个权重,最终将各个类别的加权票数求和,最大的值对应的类别为最终类别。

p集成学习之结合策略

在上面几节里面我们主要关注于学习器,提到了学习器的结合策略但没有细讲,本节就对集成学习之结合策略做一个总结。我们假定我得到的T个弱学习器是{h1,h2,...hT}

p学习

上两节的方法都是对弱学习器的结果做平均或者投票,相对比较简单,但是可能学习误差较大,于是就有了学习法这种方法,对于学习法,代表方法是stacking,当使用stacking的结合策略时, 我们不是对弱学习器的结果做简单的逻辑处理,而是再加上一层学习器,也就是说,我们将训练集弱学习器的学习结果作为输入,将训练集的输出作为输出,重新训练一个学习器来得到最终结果

这种情况下,我们将弱学习器称为初级学习器,将用于结合的学习器称为次级学习器。对于测试集,我们首先用初级学习器预测一次,得到次级学习器的输入样本,再用次级学习器预测一次,得到最终的预测结果。

pscikit-learn随机森林类库概述

scikit-learn中,RF的分类类是RandomForestClassifier,回归类是RandomForestRegressor。当然RF的变种Extra Trees也有, 分类类ExtraTreesClassifier,回归类ExtraTreesRegressor。由于RFExtra Trees的区别较小,调参方法基本相同,本文只关注于RF的调参

pRF框架参数

首先我们关注于RFBagging框架的参数。这里可以和GBDT对比来学习。在scikit-learn 梯度提升树(GBDT)调参小结中我们对GBDT的框架参数做了介绍。GBDT的框架参数比较多,重要的有最大迭代器个数,步长和子采样比例,调参起来比较费力。但是RF则比较简单,这是因为bagging框架里的各个弱学习器之间是没有依赖关系的,这减小的调参的难度。换句话说,达到同样的调参效果,RF调参时间要比GBDT少一些

下面我来看看RF重要的Bagging框架的参数,由于RandomForestClassifierRandomForestRegressor参数绝大部分相同,这里会将它们一起讲,不同点会指出。

pRF框架参数

下面我来看看RF重要的Bagging框架的参数,由于RandomForestClassifierRandomForestRegressor参数绝大部分相同,这里会将它们一起讲,不同点会指出

1) n_estimators: 也就是弱学习器的最大迭代次数,或者说最大的弱学习器的个数。一般来说n_estimators太小,容易欠拟合,n_estimators太大,计算量会太大,并且n_estimators到一定的数量后,再n_estimators获得的模型提升会很小,所以一般选择一个适中的数值。默认是100

2) oob_score :即是否采用袋外样本来评估模型的好坏。默认识False。个人推荐设置为True,因为袋外分数反应了一个模型拟合后的泛化能力

3) criterion: CART树做划分时对特征的评价标准。分类模型和回归模型的损失函数是不一样的。分类RF对应的CART分类树默认是基尼系数gini,另一个可选择的标准是信息增益。回归RF对应的CART回归树默认是均方差mse,另一个可以选择的标准是绝对值差mae。一般来说选择默认的标准就已经很好的

 

上面可以看出, RF重要的框架参数比较少,主要需要关注的是 n_estimators,即RF最大的决策树个数

pRF决策树参数

面我们再来看RF的决策树参数,它要调参的参数基本和GBDT相同,如下

ØRF划分时考虑的最大特征数max_features: 可以使用很多种类型的值,默认是"auto",意味着划分时最多考虑N−−√N个特征;如果是"log2"意味着划分时最多考虑log2Nlog2N个特征;如果是"sqrt"或者"auto"意味着划分时最多考虑N−−√N个特征。如果是整数,代表考虑的特征绝对数。如果是浮点数,代表考虑特征百分比,即考虑(百分比xN)取整后的特征数。其中N为样本总特征数。一般我们用默认的"auto"就可以了,如果特征数非常多,我们可以灵活使用刚才描述的其他取值来控制划分时考虑的最大特征数,以控制决策树的生成时间

Ø决策树最大深度max_depth: 默认可以不输入,如果不输入的话,决策树在建立子树的时候不会限制子树的深度。一般来说,数据少或者特征少的时候可以不管这个值。如果模型样本量多,特征也多的情况下,推荐限制这个最大深度,具体的取值取决于数据的分布。常用的可以取值10-100之间。

pRF决策树参数

面我们再来看RF的决策树参数,它要调参的参数基本和GBDT相同,如下

Ø内部节点再划分所需最小样本数min_samples_split: 这个值限制了子树继续划分的条件,如果某节点的样本数少于min_samples_split,则不会继续再尝试选择最优特征来进行划分。 默认是2.如果样本量不大,不需要管这个值。如果样本量数量级非常大,则推荐增大这个值

Ø叶子节点最少样本数min_samples_leaf: 这个值限制了叶子节点最少的样本数,如果某叶子节点数目小于样本数,则会和兄弟节点一起被剪枝。 默认是1,可以输入最少的样本数的整数,或者最少样本数占样本总数的百分比。如果样本量不大,不需要管这个值。如果样本量数量级非常大,则推荐增大这个值

Ø叶子节点最小的样本权重和min_weight_fraction_leaf:这个值限制了叶子节点所有样本权重和的最小值,如果小于这个值,则会和兄弟节点一起被剪枝。 默认是0,就是不考虑权重问题。一般来说,如果我们有较多样本有缺失值,或者分类树样本的分布类别偏差很大,就会引入样本权重,这时我们就要注意这个值了。

pRF决策树参数

面我们再来看RF的决策树参数,它要调参的参数基本和GBDT相同,如下

Ø最大叶子节点数max_leaf_nodes: 通过限制最大叶子节点数,可以防止过拟合,默认是"None”,即不限制最大的叶子节点数。如果加了限制,算法会建立在最大叶子节点数内最优的决策树。如果特征不多,可以不考虑这个值,但是如果特征分成多的话,可以加以限制,具体的值可以通过交叉验证得到

Ø节点划分最小不纯度min_impurity_split这个值限制了决策树的增长,如果某节点的不纯度(基于基尼系数,均方差)小于这个阈值,则该节点不再生成子节点。即为叶子节点 。一般不推荐改动默认值1e-7

Ø上面决策树参数中最重要的包括最大特征数max_features, 最大深度max_depth, 内部节点再划分所需最小样本数min_samples_split和叶子节点最少样本数min_samples_leaf

sklearn.ensemble.RandomForestRegressor(  n_estimators=10,criterion='mse',max_depth=None,

min_samples_split=2,

 min_samples_leaf=1,

 min_weight_fraction_leaf=0.0,

 max_features='auto',

 max_leaf_nodes=None,

 min_impurity_split=1e-07,

 bootstrap=True,

 oob_score=False,

 n_jobs=1,

 random_state=None,

 verbose=0,

  warm_start=False)

p决策树参数

参数

释义

criterion

mse来选择最合适的节点。

splitter

best” or “random”(default=”best”)随机选择属性还是选择不纯度最大的属性,建议用默认。

max_features

选择最适属性时划分的特征不能超过此值。

当为整数时,即最大特征数;当为小数时,训练集特征数*小数;

if “auto”, then max_features=sqrt(n_features).

If “sqrt”, thenmax_features=sqrt(n_features).

If “log2”, thenmax_features=log2(n_features).

If None, then max_features=n_features.

max_depth

(default=None)设置树的最大深度,默认为None,这样建树时,会使每一个叶节点只有一个类别,或是达到min_samples_split

min_samples_split

根据属性划分节点时,每个划分最少的样本数。

参数

释义

min_samples_leaf

叶子节点最少的样本数。

max_leaf_nodes

叶子节点最少的样本数。

min_weight_fraction_leaf

(default=0) 叶子节点所需要的最小权值

verbose

 (default=0) 是否显示任务进程

 

 

 

 

 

p随机森林参数

参数

释义

n_estimators=10

决策树的个数,越多越好,但是性能就会越差,至少100左右(具体数字忘记从哪里来的了)可以达到可接受的性能和误差率。

bootstrap=True

是否有放回的采样。

oob_score=False

obout of band,带外)数据,即:在某次决策树训练中没有被bootstrap选中的数据。多单个模型的参数训练,我们知道可以用cross validationcv)来进行,但是特别消耗时间,而且对于随机森林这种情况也没有大的必要,所以就用这个数据对决策树模型进行验证,算是一个简单的交叉验证。性能消耗小,但是效果不错。

n_jobs=1

 并行job个数。这个在ensemble算法中非常重要,尤其是bagging(而非boosting,因为boosting的每次迭代之间有影响,所以很难进行并行化),因为可以并行从而提高性能。1=不并行;nn个并行;-1CPU有多少core,就启动多少job

参数

释义

warm_start=False

热启动,决定是否使用上次调用该类的结果然后增加新的。

class_weight=None

 各个label的权重。

random_state

随机数种子是为了保证每次随机的结果都是一样的,为了得到更好的分类间隔

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值