这题卡了好久喔,发下自己的思路吧。
首先这样想,
设原数n,
那么可以对n进行分解,怎么分解呢?看图:
可以看到,将数进行分解,奇数项对应的值和小于该奇数项的最大偶数项对应的值是一样的,即若n为奇数f[n]=f[n-1],
同时,若n为偶数,那么f[n]=f[n-1]+f[n/2];
PS:分解完还要记得算上原数!原数也算一个!
f[1]=1;
f[2]=f[1]+1=2
f[3]=f[2]=f[1]+1=2
f[4]=f[3]+f[2]=f[2]+f[2]=f[1]+1+f[1]+1=4;
f[5]=f[4]=4;
f[6]=f[5]+f[3]=6
…
很直观的看出递归的解法,
让我们来试试暴力递归:
#include<iostream>
using namespace std;
int func(int n)
{
if (n==1) //n为1,答案为1
return 1;
else if (n % 2 == 1)
return func(n - 1); //
else if (n % 2 == 0)
return func(n - 1) + func(n / 2);
}
int main()
{
int x;
cin >> x;
cout << func(x) << endl;
return 0;
}
提交测试,发现只能ac五个测试点。下面让我们试试记忆化递归,
代码如下:
#include<iostream>
using namespace std;
long a[1001] = {}; //存储已经求过的项
int func(int n)
{
if (a[n]) //若非0
return a[n]; //则返回
else if(n == 1) //若n为1
{
a[n] = 1; //赋值
return 1; //返回
}
else if (n % 2 == 1) //若为奇数
return func(n - 1); //返回
else if (n % 2 == 0) //若为偶数
a[n]=func(n - 1) + func(n / 2); //返回
return a[n];
}
int main()
{
int x;
cin >> x;
cout << func(x) << endl;
return 0;
}
直接全部ac。