使用yolov4训练自己的数据集

本文档详细介绍了如何使用YOLOv4进行深度学习图像识别的训练,包括下载darknet源码,编译,测试预训练模型,准备训练集,配置文件修改,以及开始训练和测试的过程。重点强调了数据集的准备,如图像和标注文件的组织,以及训练前的配置文件调整。
摘要由CSDN通过智能技术生成

1.下载

git clone https://github.com/AlexeyAB/darknet.git

2.编译

  • ⾸先进⼊到 darknet ⽂件夹⽬录下
make
  • 改动 darknet ⽂件夹下 Makefile ⽂件下⾯的代码,其他不动。
 GPU = 1 
 CUDNN = 1 
 CUDNN_HALF = 1 
 OPENCV = 1 

3.测试

3.1 下载 yolov4.weights

https://github.com/AlexeyAB/darknet/releases/download/dark

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值