mac系统python、anaconda和pycharm安装及关联

mac系统python、anaconda和pycharm安装及关联

  • 其实不用安装python也可以,安装了python在pycharm中会默认有个环境为安装的python环境。

  • 安装三者顺序为python,anaconda最后为pycharm。

  • python的安装按照官网的步骤下就OK。anaconda下载也是,需要注意其安装路径,其中需要注意的还有下图中两点都选上
    在这里插入图片描述

  • 最重要的是pycharm的下载,这里建议企业版,当然因为有30天试用版,

  • 在这里插入图片描述
    在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 安装好pycharm后,最重要的就是将pycharm和anaconda关联起来,在桌面上新建一个文件夹,将其拖入pycharm中,这时候会自动生成main.py文件

  • 在这里插入图片描述
    在这里插入图片描述
    选Show All
    在这里插入图片描述选➕号
    在这里插入图片描述这里可以选择想要的python版本。

  • 这里需要注意location中的untiled就是你创建的环境的名字,这里可以改成想要起的名字,这里的conda executable是安装的anaconda的路径,这里需要找到你自己的anaconda的安装路径,找到其中的bin文件下的conda,再点击ok就可以了。

  • 现在需要去terminal中激活你的环境,这里有个问题有时候会显示没有发现conda,这里需要去你的磁盘上用户的位置
    寻找你隐藏文件.bash_profile文件,按shift+command+.这三个键就可以显示隐藏文件夹。
    在这里插入图片描述
    在这里插入图片描述
    打开copy其中红线画的代码,加入到环境变量中,再输入source activate进入再输入conda deactivate退出,这样子conda就可以使用了。(如果不加入环境变量中,可以直接输入终端)
    最后输入conda activate xueqi就可以激活这个环境了(注意我将untiled改成了xueqi,这是我的环境名)。
    在这里插入图片描述
    输入conda --version可以显示conda的版本,这时候可就以使用conda来安装各种包了,这里需要注意以后每次需要使用conda命令时,都需要输入以上四行代码。

  • 到这里为止已经创建了conda环境了,但是有些文件我们还需注意他不是在我们创建的conda环境里面的而是在你原先下的python的环境里面,这样子在我们的环境里安装的各种包就不能使用,所以一定要注意切换文件夹的环境。

### LlamaIndex 多模态 RAG 实现 LlamaIndex 支持多种数据类型的接入与处理,这使得它成为构建多模态检索增强生成(RAG)系统的理想选择[^1]。为了实现这一目标,LlamaIndex 结合了不同种类的数据连接器、索引机制以及强大的查询引擎。 #### 数据连接器支持多样化输入源 对于多模态数据的支持始于数据收集阶段。LlamaIndex 的数据连接器可以从多个异构资源中提取信息,包括但不限于APIs、PDF文档、SQL数据库等。这意味着无论是文本还是多媒体文件中的内容都可以被纳入到后续的分析流程之中。 #### 统一化的中间表示形式 一旦获取到了原始资料之后,下一步就是创建统一而高效的内部表达方式——即所谓的“中间表示”。这种转换不仅简化了下游任务的操作难度,同时也提高了整个系统的性能表现。尤其当面对复杂场景下的混合型数据集时,良好的设计尤为关键。 #### 查询引擎助力跨媒体理解能力 借助于内置的强大搜索引擎组件,用户可以通过自然语言提问的形式轻松获得所需答案;而对于更复杂的交互需求,则提供了专门定制版聊天机器人服务作为补充选项之一。更重要的是,在这里实现了真正的语义级关联匹配逻辑,从而让计算机具备了一定程度上的‘认知’功能去理解和回应人类意图背后所蕴含的意义所在。 #### 应用实例展示 考虑到实际应用场景的需求多样性,下面给出一段Python代码示例来说明如何利用LlamaIndex搭建一个多模态RAG系统: ```python from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext from langchain.llms.base import BaseLLM import os def create_multi_modal_rag_system(): documents = SimpleDirectoryReader(input_dir='./data').load_data() llm_predictor = LLMPredictor(llm=BaseLLM()) # 假设已经定义好了具体的大型预训练模型 service_context = ServiceContext.from_defaults( chunk_size_limit=None, prompt_helper=PromptHelper(max_input_size=-1), llm_predictor=llm_predictor ) index = GPTSimpleVectorIndex(documents, service_context=service_context) query_engine = index.as_query_engine(similarity_top_k=2) response = query_engine.query("请描述一下图片里的人物表情特征") print(response) ``` 此段脚本展示了从加载本地目录下各类格式文件开始直到最终完成一次基于相似度排序后的top-k条目返回全过程。值得注意的是,“query”方法接收字符串参数代表使用者想要询问的内容,而在后台则会自动调用相应的解析模块并结合先前准备好的知识库来进行推理计算得出结论。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值