回归任务结果可视化(含示例)

本文探讨了如何有效地在一张图中展示回归任务中的真值、预测值和误差,通过散点图与直方图结合,并举例使用Python Matplotlib实现。还提及了森林图和折线图的应用,以及代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

对于回归任务的误差展示方式,提供一个自己的作图示例。

回归任务最终我们有真值、预测值、误差值,如果想把这些结果以图的形式展示出来,直接在一张图上,我还没找到一个好的展现形式,我想到的是,用两个图去展示这些结果,类似下面这种:
在这里插入图片描述
图的左半部分为散点图,展示真实值与预测值;图的右侧为直方图,展示误差。

我还见到一些用森林图来展示的(目前还没用过),以及用折线图展示(我觉得折线图对于横轴有连贯关系的可以,向上面那种用折线图感觉不合适),这些后面如果用到再进行补充吧 。

上面那种形式的代码如下:

import numpy as np
import matplotlib.pyplot as plt

fig, ax = plt.subplots(nrows=1, ncols=2)

ax[0].scatter(list(range(8)), [0, 0, -5, 0.083834968, 0.083834968, 0.046679761, 0, 0], marker='x', s=50)
ax[0].scatter(list(range(8)),
              [-0.044304427, -0.055897386, -4.709306038, 0.300752527, 0.307069213, 0.211004726, 1.0708309,
               -1.748374749], marker='+')
ax[1].bar(list(range(8)),
          [0.044304427, 0.055897386, 0.290693962, 0.216917559, 0.223234244, 0.164324965, 1.0708309, 1.748374749])
ticks = np.arange(0, 8, 1)
labels = ['x', 'y', 'z',  r'$\beta_x$', r'$\beta_y$', r'$\beta_z$', 'pitch', 'roll']
ax[0].set_xticks(ticks)
ax[0].set_xticklabels(labels, rotation=30)
ax[1].set_xticks(ticks)
ax[1].set_xticklabels(labels, rotation=30)
ax[0].legend(['True', 'predicted'])
ax[0].set_title('result')
ax[1].set_title('error')
plt.show()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱学习的贝塔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值