IID 与 Non-IID

数据独立同分布(Independent Identically Distribution,IID)

数据与数据之间都是独立的,但满足同一个分布。(独立:一个数据的出现不会影响另一个数据)

数据分布描述的是数据的统计情况:横坐标表示所有可能的分类情况,纵坐标表示的是对应分类数据量。

在现实生活中,很多时候,数据可能是围绕着一个中心分布,不偏左、不偏右、也不或高或低,呈现一种中间高、两边低的趋势,我们称之为“正态分布”(也叫“高斯分布”):

正态分布的简单性质。第一,平均数=中位数=众数;第二,关于中心对称;第三,50%的数据比平均数小,50%的数据比平均数大。


 

为什么要假设数据是独立和相同分布(i.i.d)

这个假设让maximization在数学上非常容易计算。

观察数学的独立和相同分布(independent and identical distribution)的假设,简化了优化问题中likelihood函数的计算。因为独立性的假设,likelihood函数可以这样写

 

简而言之,likelihood函数可以简化为

 

简化后的函数对参数估计很有用。 为了最大化观察到的事件的可能性,取log函数,最大化参数θ。

 

并且从log函数的“乘法变加法”的属性,参数评估θ的方程式简化成

 

计算机计算多次加法是很高效的,计算乘法并不高效。这一个简化是计算效率提高了核心原因。而这个Log变换也在最大化的过程中,把很多exponential的函数变成线性函数。

并且要完成最大化的倒数第二步,扩展概率函数。 以高斯分布为例。 为何选择高斯? 我将在下面解释。

 

最后一步是采用log likelihood的导数并找到能最大化log likelihood的μ和sigma.

可用,易用

在这个假设在实际应用中好用

  • 中心极限定理(central limit theorem)+ big data
  • 简单模型+高质量数据=优质的模型

即使样本来自更复杂的非高斯分布,它也能很好地approximate。 因为它可以从中心极限定理简化为高斯分布。 对于大量可观测的样本,“许多随机变量的总和将具有近似正态的分布”。

model的accuracy取决于model unit的简单性和representative power,以及数据质量。 因为unit的简单性使其易于interpret和scale,并且unit的representative power + scale out使得model accuracy提高。 像在一个深度神经网络,每个neuron都很简单但有strong representative power,一层一层的来表示更复杂的features,提高model accuracy。

==================================================================================

独立同分布数据,说明我们用来训练的样本点具有较好的总体代表性。

我们要从已有的数据(经验) 中总结出规律来对未知数据做决策,如果获取训练数据是不具有总体代表性的,就是特例的情况,那规律就会总结得不好或是错误,因为这些规律是由个例推算的,不具有推广的效果。

通过独立同分布的假设,就可以大大减小训练样本中个例的情形。

==================================================================================

非数据独立同分布(Non - Independent Identically Distribution,Non-IID)

Non-IID的意思即数据之间非独立,或者非同分布。但现实数据一般都是独立的。

数据与数据之间都是独立的,但不满足同一个分布。

实场景中不同设备的数据的质和量都不尽相同,数据很难满足 IID 的前提假设。

 

### 回答1: "Federated learning with non-iid data" 的含义是:在非独立同分布数据(non-iid data)的情况下进行联邦学习。联邦学习是一种分布式学习的方法,其特点是模型的训练和更新是在本地设备上进行,而不是在中心服务器上进行。而非独立同分布数据则意味着不同设备之间的数据具有不同的分布和特征,这会对联邦学习的效果造成挑战。因此,在进行联邦学习时,需要考虑如何处理这种情况,以提高模型的准确性和鲁棒性。 ### 回答2: 联邦学习是近年来备受关注的一种机器学习方法,其核心精神是通过多个客户端设备在本地进行数据处理和训练模型,不必将原始数据汇集到一起,避免了隐私泄露和数据传输带来的风险。但实际上,大多数现实场景中的数据并不是独立同分布的(non-iid),多个客户端设备所在的数据分布也极有可能不同,如何在保持原有联邦学习思路的基础上应对非iid数据,也成为了当前研究的热门问题。 目前,学界和产业界对非iid联邦学习的解决方案尝试有很多,其中一些典型的方法包括: 一、联邦聚类(Federated Clustering)。该方法利用监督和非监督的数据聚类模型,对处理不同数据分布的客户端设备进行分类,形成若干个数据分布相似的组,然后在每个组中进行联合学习,对每个组得到的模型结果进行合并。 二、联邦迁移学习(Federated Transfer Learning)。该方法通过在源域数据上进行模型训练和参数更新,再通过一定的方法将已训练的模型迁移到目标域中进行更新和优化,从而使得目标域数据更好地适应模型。 三、混合学习(Federated Hybrid Learning)。该方法结合了联邦学习和分层模型的想法,将多个客户端设备的数据层级化,在相同维度的数据上进行联邦学习,但不同层级内的数据各自训练特定的模型。 以上这些方法都对非iid联邦学习的问题提供了一定的思路和解决方案,在应用场景中也得到了初步的应用。但是,不同于iid数据的不同分布、语义、类别之间的差异使得非iid联邦学习更具挑战性,其数据分布、协作策略、学习算法等方面的问题都需要进一步研究和提高。未来,我们需要不断探索更好、更高效、更准确的非iid联邦学习的方法和方案,应用到各个行业领域提高数据的利用效率和隐私保护水平。 ### 回答3: 联邦学习是一种先进的机器学习技术,它允许多个参与方共同训练一个模型,而不需要将原始数据集集中在单个位置。这种分布式学习的方式可以最大程度地保护用户的数据隐私和安全。 然而,在实际应用中,有时候我们会遇到一些具有不同的分布性质的非IID数据集。因为数据的不均匀和异构性质,使得对于分布在不同的机器上的数据进行联合训练变得更加困难。这种情况也称为不相同的数据偏移或数据漂移。不同分布性质的数据会导致训练模型的性能下降,因为模型无法对不同的数据进行适应。这也使得联合学习更具挑战性。 为了解决这个问题,可以对数据进行采样和重新加权,以便在融合时使每个本地模型对于不同的数据立场相对均衡。一种基于采样的方案是Federated Averaging with Local Adapation(FALA),它是一种高效的算法,它通过对于权值进行本地的调整,减少了由于数据偏移带来的下降的性能。此外,类别抽样和异质性采样也可以用来处理iid 的数据集之间的不相同。在数据偏移情况下,这需要更多的小样本和多轮次迭代。 另一种方法是加入对模型的个性化贡献,即在联合优化时分配不同的权重给本地模型或者对于不同的参与方使用不同的模型。例如,对于基于 神经网络的模型,可以采用逻辑斯蒂回归模型或者线性模型,以提高对于多样性的应对能力。 总而言之,对于不同的非IID数据,需要在联合训练时采用合适的方案,以克服分布不均带来的挑战并获得更好的结果。需要根据不同的实际情况选择最佳的方法,以满足不同的需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值