联邦学习中的非独立同分布Non-IID

在联邦学习Federated Learning中,出现的很高频的一个词就是Non-IID,翻译过来就是非独立同分布,这是一个来自于概率论与数理统计中的概念,下面我来简单介绍一下在Federated Learning中IID和Non-IID的概念。

何为IID(独立同分布)

IID是数据独立同分布(Independent Identically Distribution,IID),它是指一组随机变量中每个变量的概率分布是相同的,且这些随机变量互相独立。下面介绍IID中的“独立”和“同分布”这两个概念:

  • 独立性:采样样本之间相互独立,互不影响。用数学公式表达:如果随机变量X和Y独立,那么它们的联合概率分布可以分解为 P ( X , Y ) = P ( X ) ∗ P
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值