Outer Product-based Neural Collaborative Filtering

本文提出了一种基于外积的神经协同过滤框架ONCF,其中的ConvNCF利用卷积层从局部到全局学习嵌入维度之间的高阶相关性。实验表明,外积和CNN在稀疏数据上能有效建模用户和物品嵌入的交互,提高推荐系统的性能。
摘要由CSDN通过智能技术生成


核心思想: 用外积来构造嵌入维度之间的pair交互。使用多层CNN来提取交互映射间的高阶交互

1 Introduction

设计CF模型的关键:

  • 怎样表示用户和物品
  • 怎样基于表示构造他们的交互

指出MF的局限性——使用内积:设想嵌入维度之间是独立的;每个维度对预测结果贡献相同。NCF使用多层MLP代替内积来解决这个局限,有一些模型使用用户和物品嵌入concat+多层MLP,元素对应位置相乘等。本文指出这样的设计也很少对嵌入维度间的交互进行建模。虽然MLP可以理论上可以拟合各种连续函数,但是实际情况下,维度间的交互通常很难被MLP学到。

本文使用外积构造嵌入维度之间的交互,这样的交互映射包含丰富的语义信息,能够帮助后续的非线性函数学习嵌入维度间高阶的交互。

2 Proposed Methods

提出了ONCF框架,并且实现了一个具体化实例,ConvNCF

2.1 ONCF

在这里插入图片描述

输入和嵌入

按照本文给的嵌入计算方式,不同field的特征嵌入直接相加得到最终的嵌入,所以嵌入是K维。而不是每个field的嵌入concat,得到field数×K的嵌入??
在这里插入图片描述
在这里插入图片描述
K,嵌入维度;M,用户特征数量;N,物品特征数量。

交互map
在这里插入图片描述
得到K×K的交互map——E。使用外积的好处:

  • 包含矩阵分解(只看对角元素)
  • 考虑不同嵌入维度之间的相关性,比MF编码了更多信号
  • 比concat更有意义,concat保留了嵌入的原始信息,而没有建模任何相关性

[He and Chua, 2017;Beutel et al., 2018]文献表明,对于深度模型适应稀疏数据的问题,显式地对特征嵌入间的交互进行建模很有效,适用concat是次优的。由于E是2D矩阵,可以看做image,就可以使用CV中的先进方法。

隐藏层

目的是从交互映射中提取有用的信号
f 可以是以矩阵为输入,向量为输出的任何函数
在这里插入图片描述

预测层

向量为输入,输出预测分
在这里插入图片描述
参数空间为 P , Q , θ , w P,Q ,\theta, w P,Q,θ,w,分别为两个嵌入;隐藏层 f 的参数;预测层的参数。

采用BPR损失函数:
在这里插入图片描述
对于所有的训练样本对,增大 w w w 都可以扩大 y ^ p o s − y ^ n e g \hat y_{pos}-\hat y_{neg} y^p

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值