“傻瓜”学计量——OLS2(多重共线性:方差膨胀系数VIF、容忍度)

提纲:

一、什么是多重共线性    定义+后果

二、怎么检测回归模型中有无多重共线性

三、出现多重共线性要怎么处理

一、什么是多重共线性?

(一)定义

多重共线性(Multicollinearity)是指多元线性回归中,自变量之间存在高度相关关系而使得回归估计不准确的情况。

按照相关程度分为两种:

1.精准相关

是指其中一个自变量是另外一个自变量的线性变换

举例:X2=a+b✖X3

2.高度相关

是指相关关系为“显著”

(二)为什么不能有多重共线性

简单来说,若存在多重共线性,假设为上图中所示,则原模型可以改写成下面的式子。而回归的结果并不知\beta2与\beta3之间如何分配,也即是不知道到底是给

多重共线性是指在回归模型中,自变量之间存在很高的线性相关性。在Python中,可以使用VIF容忍度和相关系数等方法来判断和解决多重共线性问题。 1. VIF(方差膨胀因子)是一种常用的判断多重共线性方法。在Python中,可以使用statsmodels库中的variance_inflation_factor函数来计算VIF值。当VIF小于10时,说明不存在多重共线性;当VIF在10到100之间时,存在较强的多重共线性;当VIF大于等于100时,存在严重多重共线性2. 容忍度(Tolerance)是VIF的倒数。通过计算自变量的容忍度,可以判断是否存在多重共线性容忍度越小,说明共线性越严重。可以使用statsmodels库中的ols函数来建立回归模型,并使用相关代码来计算容忍度。 3. 主成分分析是一种常用的消除多重共线性方法。通过对自变量做主成分分析,可以降低自变量之间的相关性。可以使用numpy库中的linalg.eig函数来计算特征值,从而判断是否存在严重的共线性。 4. 相关系数是用来衡量变量之间线性关系强度的一种指标。在判断多重共线性时,可以通过计算相关系数矩阵来分析自变量之间的相关性。可以使用pandas库中的corr函数来计算相关系数。 综上所述,Python提供了多种方法来判断和解决多重共线性问题,包括VIF容忍度、主成分分析和相关系数等方法。根据具体情况选择合适的方法进行分析和处理。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [Python 多重共线性检验](https://blog.csdn.net/weixin_35757704/article/details/114732400)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* [基于Python回归模型的多重共线性分析](https://blog.csdn.net/DL11007/article/details/129196843)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值