BN、LN、dropout、神经元

二、BN(放在激活项前面)

1、一句话介绍BN

  • BN是神经网络为了防止梯度消失或梯度爆炸采取的一种策略,一般放在激活项前。

2、BN的过程可以描述吗?

  • 输入一个数据集合B,对该数据集合B求其均值和方差,然后对B进行归一化操作,同时BN还有两个可学习的参数r和β,通过这两个参数对归一化后的结果进行一定程度的还原。
    在这里插入图片描述

3、BN中归一化的目的是什么?

  • 将数据统一到一个区间内,减少数据的发散,从而加速模型的收敛。

4、归一化与标准化

  • 常见的归一化公式为:在这里插入图片描述
  • 标准化公式如问题2所示。

5、BN中均值、方差通过哪些维度计算得到?

均值与方差的计算类似,这里以均值计算为例:
假设输入数据的维度是[batchsize channel w h]
那么这里就要考虑channel的数量,假设channel有3个,分别为1、2、3标号;batchsize为10。
那么channel 1中的10个数据全部相加然后除以batchsize * w * h
channel 2中的10个数据全部相加然后除以batchsize* w * h
channel 3中的10个数据全部相加然后除以batchsize * w * h。
所以r和β参数的维度其实和channel是一样的,此时为3。

6、训练与推理时BN中的均值、方差分别是什么

  • 训练时是该batchsize求得的,
  • 推理时是全部批次求得的。

7、BN训练时为什么不用全量训练集的均值和方差呢?

  • 在当前batch训练时,是无法得知该batch以外的数据信息的,所以得选择该batch下的样本求得均值与方差。

三、LN(Layer Normalization)

1、Transformer中的LN是什么样子的?

首先也是在激活项前进行,先求出一个样本的均值和方差(比如单层隐藏层各个神经元的均值与方差),然后执行归一化操作,但这里存在一个gain参数和bias偏置参数,也是学习得到的,用来增强模型表达能力。
在这里插入图片描述

2、Transformer中为什么要舍弃 BN 改用 LN 呢

原始BN是为CNN而设计的,对整个batchsize范围内的数据进行考虑,而对于RNN以及transformer等等处理文本序列信息的模型来说,BN会变得非常复杂,而LN是对单个样本就可以进行处理,更加方便简单,自然选择用LN了。

3、Transformer中LN的作用?

当我们使用梯度下降法做优化时,随着网络深度的增加,数据的分布会不断发生变化,为了保证数据特征分布的稳定性,我们加入Layer Normalization,这样可以加速模型的收敛速度

Normalization 有很多种,但是它们都有一个共同的目的,那就是把输入转化成均值为 0 方差为1的数据。我们在把数据送入激活函数之前进行normalization(归一化),因为我们不希望输入数据落在激活函数的饱和区,发生梯度消失的问题,使得我们的模型训练变得困难。
在这里插入图片描述

4、BN和LN的区别

BN是对batchsize范围内数据进行处理
LN是对单个样本数据进行处理。

四、dropout

1、Dropout运行细节?

对于一个普通的DNN来说,
使用Dropout之后,过程变成如下:

随机临时删除一定比例的隐藏层神经元,其他不变。
前向传播,并且反向传播。
没有被临时删除的神经元进行梯度更新。
重复这个过程。

2、Dropout 在训练和测试时都需要嘛?

Dropout 在训练时采用,是为了减少神经元对部分上层神经元的依赖,类似将多个不同网络结构的模型集成起来,减少过拟合的风险。
而在测试时,应该用整个训练好的模型,因此不需要dropout。

3、Dropout 如何平衡训练和测试时的差异呢?

Dropout ,在训练时以一定的概率使神经元失活,实际上就是让对应神经元的输出为0

假设失活概率为 p ,就是这一层中的每个神经元都有p的概率失活,如下图的三层网络结构中,
在这里插入图片描述
如果失活概率为0.5,则平均每一次训练有3个神经元失活,所以输出层每个神经元只有3个输入,而实际测试时是不会有dropout的,输出层每个神经元都有6个输入,这样在训练和测试时,输出层每个神经元的输入和期望的会有量级上的差异。

因此在训练时还要对第二层的输出数据除以(1-p)之后再传给输出层神经元,作为神经元失活的补偿,以使得在训练时和测试时每一层输入有大致相同的期望

4、BN和Dropout共同使用时会出现的问题

一般可能都是先dropout再BN的,但是这样会出现问题的。所以如果真的想同时使用,那么就先BN再dropout
BN和Dropout单独使用都能减少过拟合并加速训练速度,但如果一起使用的话并不会产生1+1>2的效果,相反可能会得到比单独使用更差的效果。

当dropout在BN之前的时候,我们知道dropout在训练的时候会有随机失活,但是在预测时没有随机失活,为了弥补这个之间的一个gap,在训练的时候会把当前随机失火的这个神经元的一个输出数据进行一定程度的放缩,具体来说是除以一减p,然后当做下一层的一个输入数据,那么因为dropout在BN之前,训练时,BN会基于这些放缩的结果进行参数的学习。而预测时,dropout不进行放缩了,必然会对数据分布等产生一定影响,而此时的BN参数是基于之前放缩结果进行学习的,所以必然对BN会产生一定的影响。(学术界称为’方差偏移’)

五、神经元

总结

  • 神经元的存在形式是一系列参数,并且是可学习的参数。
  • 神经元可以接受不同尺寸的输入,也可以将输入与内部参数进行任意运算/操作(但操作方式应予输入尺寸相匹配)。
  • 神经元的输出大小取决于输入数据的大小和神经元操作方式
  • 神经元在输出前需要apply非线性函数
  • 一个神经元配备一个bias

另一个思考的角度是:经过神经元的处理,输出通常都会比输入数据的尺寸要小,这其实是一种信息整合的体现

<think>嗯,我现在要详细了解一下深度学习中的各种归一化方法及其原理。用户需要理解底原理和具体实现,所以我得先回忆一下常见的归一化技术,比如批归一化(Batch Normalization)、归一化(Layer Normalization)、实例归一化(Instance Normalization)、组归一化(Group Normalization)等等。可能还有其他的,比如权重归一化或者谱归一化,不过这些可能不是同一类的,需要区分清楚。 首先,批归一化(BN)应该是最经典的。我记得BN是在训练过程中对每个小批量数据进行归一化,也就是对每个神经元的输入进行标准化,使其均值0,方差1,然后通过可学习的参数缩放和平移。这样做的好处是可以减少内部协变量偏移,加速训练,允许更大的学习率,还有一定的正则化效果。不过具体实现的时候,BN在训练和测试阶段是不一样的,测试阶段使用的是移动平均的均值和方差。这部分需要详细解释。 然后是归一化(LN),它跟BN不同,是针对单个样本的所有神经元进行归一化。也就是说,在同一个内,对同一个样本的所有激活值计算均值和方差,然后应用缩放和偏移。LN不依赖于批量大小,所以在小批量或者动态批量情况下表现更好,比如在RNN中常用。不过它的原理和BN有什么本质区别呢?可能是在归一化的维度上不同,BN是在批处理和其他维度(比如通道、高、宽)上进行归一化,而LN是在通道、高、宽之外的维度,比如特征维度? 接下来是实例归一化(IN),它主要用于生成对抗网络或者风格迁移任务。IN是对每个样本的每个通道单独进行归一化,也就是在(H,W)维度上计算均值和方差。这样做的目的是保持每个实例的独立性,可能有助于保留实例的样式信息。比如在风格迁移中,保留内容的结构但改变风格,IN可以更好地规范化每个样本的样式。 组归一化(GN)则是将通道分成若干组,对每个样本的每个组进行归一化。GN在批量较小时效果比BN好,因为BN在批量很小时性能下降,而GN不依赖批量大小。例如在目标检测或视频处理中,可能因为内存限制只能使用小批量,这时候GN更合适。组归一化的分组策略如何影响性能呢?可能更多的组数让归一化更细致,但计算量也会增加。 另外,还有权重归一化(Weight Normalization)和谱归一化(Spectral Normalization)。权重归一化是通过对权重向量进行重参数化,将其分解为方向和幅度,这样可以加速训练收敛。谱归一化则主要用于GAN中,通过约束权重矩阵的谱范数来稳定训练,防止判别器过强。不过用户可能更关注的是输入或激活的归一化,所以可能需要先重点讲前面几种。 现在需要理清楚这些归一化方法各自适用的场景、数学公式以及实现方式。比如BN的公式是对每个通道在N、H、W维度上计算均值和方差,而LN是在C、H、W维度上。需要明确各个方法在张量上的操作维度。 对于具体实现,每个归一化方法在框架中的实现可能不同,但大体步骤都是计算统计量,归一化,然后缩放和平移。例如在PyTorch中,这些归一化都有对应的实现,如torch.nn.BatchNorm2d、LayerNorm等,它们的参数和输入形状有关。 可能还需要比较不同归一化的优缺点。比如BN的问题在于对批量大小的依赖,当批量很小时,估计的均值和方差不准确,影响效果。而LN、IN、GN则不受批量大小的影响。另外,BN在卷积网络中使用时,是按通道进行的,即每个通道有自己的均值和方差参数,而LN可能是在所有通道上计算统计量? 比如对于四维张量(N, C, H, W),BN是在每个通道上,对N、H、W这三个维度计算均值和方差,得到C个均值和方差。而LN则是在每个样本上,对C、H、W这三个维度计算均值和方差,得到N个均值和方差。这样LN的参数数量可能与BN不同,比如缩放参数如果是每个通道的话,BN的缩放参数是C个,而LN可能也是C个?或者LN的缩放参数是针对整个的特征? 可能这里需要更仔细的数学公式来区分。例如,对于BN,假设输入为x,形状是(N, C, H, W),那么对于每个通道c,计算该通道在所有样本、所有空间位置的均值μ_c和方差σ_c²。归一化后的x是 (x - μ_c)/sqrt(σ_c² + ε),然后乘以γ_c和β_c,每个通道有自己的γ和β。 而LN则是对每个样本n,计算该样本所有通道和空间位置的均值μ_n和方差σ_n²。归一化后的x是 (x - μ_n)/sqrt(σ_n² + ε),然后乘以γ和β。不过这里γ和β的维度可能与输入有关,比如如果LN应用于最后的特征维度,可能γ和β的长度是C*H*W?或者在图像处理中,如果使用LN,通常可能是在通道维度上进行归一化,比如对每个样本的每个通道的H和W进行归一化?或者可能LN在图像中的使用较少,而更多用于NLP中的Transformer,这时候特征维度是不同的。 这部分可能需要查阅资料确认。例如,在Transformer中,LN通常应用于每个样本的特征向量,即在最后一个维度上计算均值和方差。例如,输入的形状是(batch_size, seq_length, d_model),LN会在每个样本的每个位置上(即对d_model维度)计算均值和方差,所以对于每个位置的特征向量进行归一化。而在图像处理中,LN可能对每个样本的所有元素(C、H、W)计算均值和方差,即归一化的维度是CHW。这时候γ和β的参数数量是C*H*W,但这样可能参数过多,所以实际中可能LN在图像中的使用可能需要调整,或者有不同的实现方式。 可能用户提到的归一化方法主要是BNLN、IN、GN,需要分别详细解释它们的数学原理、操作维度、适用场景、具体实现以及优缺点。此外,可能还需要提到它们如何影响梯度流,为什么能加速训练,以及正则化效果是如何产生的(比如BN在训练时由于小批量的噪声带来的随机性,类似于Dropout的效果)。 在具体实现上,比如在PyTorch中,BN的实现会维护一个running_mean和running_var,通过动量更新,而训练和测试时的模式不同。其他归一化方法可能不需要维护全局统计量,比如LN、IN、GN在测试时和训练时的计算方式相同,因为它们不依赖于批量统计。 另外,可能需要注意归一化的位置,比如是在激活函数之前还是之后。通常BN是在卷积之后、激活函数之前应用,但有些研究也探讨不同的位置带来的影响。 总结起来,我需要分步骤介绍每个归一化方法,包括: 1. 方法名称(如批归一化) 2. 提出背景(解决什么问题) 3. 数学公式及操作维度 4. 训练和测试阶段的差异(如有) 5. 具体实现方式(如参数数量,在框架中的使用) 6. 优缺点及适用场景 这样用户能逐步理解各个归一化的原理和应用。同时,需要确保公式的格式正确,使用$$...$$和$...$,并且用中文清晰解释。</think>以下是深度学习中的主要归一化方法及其原理的详细说明,按结构分解析: --- ### 一、批归一化(Batch Normalization, BN) #### 1. **提出背景** - 解决**内部协变量偏移**(每输入分布随训练变化),加速训练并允许更大的学习率。 #### 2. **数学原理** - 对每个**通道**的输入进行归一化(针对卷积网络): $$ \mu_c = \frac{1}{NHW}\sum_{n=1}^N \sum_{h=1}^H \sum_{w=1}^W x_{n,c,h,w} $$ $$ \sigma_c^2 = \frac{1}{NHW}\sum_{n=1}^N \sum_{h=1}^H \sum_{w=1}^W (x_{n,c,h,w} - \mu_c)^2 $$ $$ \hat{x}_{n,c,h,w} = \frac{x_{n,c,h,w} - \mu_c}{\sqrt{\sigma_c^2 + \epsilon}} $$ $$ y_{n,c,h,w} = \gamma_c \hat{x}_{n,c,h,w} + \beta_c $$ - $\gamma_c$和$\beta_c$为可学习的缩放和偏移参数。 #### 3. **实现细节** - **训练阶段**:计算当前批量的均值和方差。 - **测试阶段**:使用训练时累积的移动平均统计量。 - **参数数量**:每通道一对$\gamma$和$\beta$,共$2C$个参数。 #### 4. **优缺点** - **优点**:加速训练、缓解梯度消失/爆炸、轻微正则化。 - **缺点**:依赖批量大小(小批量效果差),不适用于动态网络(如RNN)。 --- ### 二、归一化(Layer Normalization, LN) #### 1. **提出背景** - 解决BN对批量大小的依赖,适用于RNN和Transformer。 #### 2. **数学原理** - 对每个**样本**的所有特征进行归一化: $$ \mu_n = \frac{1}{CHW}\sum_{c=1}^C \sum_{h=1}^H \sum_{w=1}^W x_{n,c,h,w} $$ $$ \sigma_n^2 = \frac{1}{CHW}\sum_{c=1}^C \sum_{h=1}^H \sum_{w=1}^W (x_{n,c,h,w} - \mu_n)^2 $$ $$ \hat{x}_{n,c,h,w} = \frac{x_{n,c,h,w} - \mu_n}{\sqrt{\sigma_n^2 + \epsilon}} $$ $$ y_{n,c,h,w} = \gamma \hat{x}_{n,c,h,w} + \beta $$ - $\gamma$和$\beta$为整个的参数。 #### 3. **实现细节** - 训练和测试逻辑一致,无需存储统计量。 - **参数数量**:每一对$\gamma$和$\beta$,共2个参数。 #### 4. **优缺点** - **优点**:独立于批量大小,适合序列模型。 - **缺点**:对卷积网络效果弱于BN。 --- ### 三、实例归一化(Instance Normalization, IN) #### 1. **提出背景** - 用于图像生成任务(如风格迁移),保持实例间独立性。 #### 2. **数学原理** - 对每个**样本的每个通道**单独归一化: $$ \mu_{n,c} = \frac{1}{HW}\sum_{h=1}^H \sum_{w=1}^W x_{n,c,h,w} $$ $$ \sigma_{n,c}^2 = \frac{1}{HW}\sum_{h=1}^H \sum_{w=1}^W (x_{n,c,h,w} - \mu_{n,c})^2 $$ $$ \hat{x}_{n,c,h,w} = \frac{x_{n,c,h,w} - \mu_{n,c}}{\sqrt{\sigma_{n,c}^2 + \epsilon}} $$ $$ y_{n,c,h,w} = \gamma_c \hat{x}_{n,c,h,w} + \beta_c $$ #### 3. **实现细节** - 参数数量与BN相同($2C$个参数)。 #### 4. **优缺点** - **优点**:保留实例的样式信息。 - **缺点**:不适用于分类任务。 --- ### 四、组归一化(Group Normalization, GN) #### 1. **提出背景** - 在小批量场景下替代BN(如目标检测)。 #### 2. **数学原理** - 将通道分为$G$组,每组单独归一化: $$ \mu_{n,g} = \frac{1}{(C/G)HW}\sum_{c \in g} \sum_{h=1}^H \sum_{w=1}^W x_{n,c,h,w} $$ $$ \sigma_{n,g}^2 = \frac{1}{(C/G)HW}\sum_{c \in g} \sum_{h=1}^H \sum_{w=1}^W (x_{n,c,h,w} - \mu_{n,g})^2 $$ $$ \hat{x}_{n,c,h,w} = \frac{x_{n,c,h,w} - \mu_{n,g}}{\sqrt{\sigma_{n,g}^2 + \epsilon}} $$ $$ y_{n,c,h,w} = \gamma_c \hat{x}_{n,c,h,w} + \beta_c $$ #### 3. **实现细节** - 分组数$G$为超参数(通常设为32)。 #### 4. **优缺点** - **优点**:在小批量下表现稳定。 - **缺点**:需手动调参分组数。 --- ### 五、其他归一化 1. **权重归一化(Weight Normalization)** - 对权重矩阵重参数化:$w = \frac{g}{\|v\|}v$,加速收敛。 2. **谱归一化(Spectral Normalization)** - 约束权重矩阵的谱范数,用于稳定GAN训练。 --- ### 六、对比总结 | 方法 | 归一化维度 | 适用场景 | 依赖批量大小 | |------------|-----------------------|------------------------|--------------| | Batch Norm | (N, H, W) | 卷积网络 | 是 | | Layer Norm | (C, H, W) | RNN/Transformer | 否 | | Instance | (H, W) | 图像生成 | 否 | | Group Norm | 通道分组 | 小批量任务(如检测) | 否 | --- ### 七、核心作用 1. **稳定训练**:通过约束输入分布,缓解梯度异常。 2. **加速收敛**:允许更大学习率。 3. **轻微正则化**:噪声来自小批量统计(如BN)。 代码实现(以PyTorch为例): ```python # BN(卷积网络) bn = nn.BatchNorm2d(num_features=C) # LN(Transformer) ln = nn.LayerNorm(normalized_shape=d_model) # GN(目标检测) gn = nn.GroupNorm(num_groups=G, num_channels=C) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值