Ng机器学习笔记——引言

本文深入探讨了机器学习的基础定义,重点介绍了监督学习中的回归问题和分类问题,以及无监督学习中的聚类方法。监督学习涉及通过连续值的拟合和离散值的预测来解决问题,而无监督学习则在未标记的数据中寻找模式和结构。理解这些基本概念对于提升机器学习算法的性能至关重要。
摘要由CSDN通过智能技术生成

引言

机器学习的基本定义

来自卡内基梅隆大学的Tom Mitchell 提出,一个程序被认为能从经验 E 中学习,解决任务 T,达到性能度量值P,当且仅当,有了经验 E 后,经过 P 评判,程序在处理T时的性能有所提升。

监督学习

  • 回归问题

    • 基于连续值,通过拟合推出一系列连续值属性

  • 分类问题

    • 基于离散值,推出一组离散的结果

无监督学习

  • 没有给定的标记好的数据

  • 聚类

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值