引言
机器学习的基本定义
来自卡内基梅隆大学的Tom Mitchell 提出,一个程序被认为能从经验 E 中学习,解决任务 T,达到性能度量值P,当且仅当,有了经验 E 后,经过 P 评判,程序在处理T时的性能有所提升。
监督学习
-
回归问题
-
基于连续值,通过拟合推出一系列连续值属性
-
-
分类问题
-
基于离散值,推出一组离散的结果
-
无监督学习
-
没有给定的标记好的数据
-
聚类
来自卡内基梅隆大学的Tom Mitchell 提出,一个程序被认为能从经验 E 中学习,解决任务 T,达到性能度量值P,当且仅当,有了经验 E 后,经过 P 评判,程序在处理T时的性能有所提升。
回归问题
基于连续值,通过拟合推出一系列连续值属性
分类问题
基于离散值,推出一组离散的结果
没有给定的标记好的数据
聚类