【全网最全最详细】智能体提示词prompt教程

目录

一、提示词基础

1.1 什么是提示词?

1.2 人设与回复逻辑

二、提示词的设计技巧

2.1 七大提示词设计原则

2.2 清晰具体

什么是“清晰具体”?

如何做到“清晰具体”?

明确任务类型

限定主题和范围

指定输出格式

定义风格和语气

添加约束条件

反面案例 vs 优化后案例

2.3 结构化拆分

为什么要用结构化拆分?

结构化拆分的3种常用方法

时间/流程顺序

逻辑模块拆分

提问式引导

高阶技巧:嵌套式拆分

不同场景的拆分案例

常见错误与修正

万能模板

结构化拆分的底层逻辑

三、角色设定

3.1 为什么需要角色设定?

3.2 角色设定的3个关键维度

(1)身份/职业

(2)受众/对象

(3)风格/语气

3.3 高阶角色设定技巧

3.4 不同场景下的角色设定案例

3.5 常见错误与修正

3.6 终极心法:角色设定=身份+专业+风格

四、示例引导

4.1 为什么需要示例引导?

4.2 示例引导的3种核心用法

(1)风格模仿

(2)格式规范

(3)内容示范

4.3 高阶技巧

多示例对比

部分示例+填空

隐性引导

4.4 不同场景的应用案例

4.5 常见错误与修正

4.6 万能模板

4.7 为什么示例引导比抽象描述更有效?

五、链式思考

5.1 为什么需要链式思考?

5.2 链式思考的4种核心用法

(1)数学/计算题

(2)逻辑推理

(3)决策分析

(4)创意生成

5.3 高阶技巧

(1)追问中间步骤

(2)对比不同推理路径

(3)错误检查

5.4 不同场景的应用案例

5.5 常见错误与修正

5.6 万能模板

5.7 为什么链式思考有效?

六、负面提示

6.1 为什么需要负面提示?

6.2 负面提示的4大核心用法

(1)内容排除

(2)风格限制

(3)格式约束

(4)伦理/合规控制

6.3 高阶技巧

(1)优先级排序

(2)反向强化

(3)嵌套排除

6.4 不同场景的应用案例

6.5 常见错误与修正

6.6 万能模板

6.7 负面提示的底层逻辑

七、参数调整

7.1 为什么需要参数调整?

7.2 核心参数及作用

(1)Temperature(温度值)

(2)Max Tokens(最大长度)

(3)Top_p(核采样)

(4)Frequency Penalty(重复惩罚)

7.3 不同场景的参数组合策略

7.4 高阶技巧

(1)动态调整

(2)参数扫描

(3)平台适配

7.5 常见错误与修正

7.6 万能模板

7.7 参数调整的底层逻辑


一、提示词基础

1.1 什么是提示词?

  • 定义:提示词是用户输入给AI模型(如ChatGPT、MidJourney等)的指令或问题,用于引导模型生成特定类型的输出。它是用户与AI交互的核心媒介。

  • 作用:提示词的质量直接影响AI输出的准确性和相关性。好的提示词能明确任务边界、减少歧义,并激发模型的创造力。

提示词就是“给AI下指令的说明书”——越清楚、越具体,AI干得越好!价值: 帮你更快、更准地拿到想要的结果,不用和AI“猜谜语”。

1.2 人设与回复逻辑

# 角色

# 任务

# 能力

# 步骤

# 要求

# 限制

# 示例

二、提示词的设计技巧

2.1 七大提示词设计原则

原则 作用 示例
1. 清晰具体 减少AI猜测,精准输出 “写300字科普文,初中生能看懂”
2. 结构化拆分 复杂任务分步完成 “第一步…第二步…”
3. 角色设定 让AI更专业/符合风格 “你是一名资深律师…”
4. 示例引导 模仿特定风格 “参考这个文案风格…”
5. 链式思考 展示推理过程 “请分步骤解释…”
6. 负面提示 排除无关内容 “不要提及政治…”
7. 参数调整 控制随机性/长度 temperature=0.5

2.2 清晰具体

什么是“清晰具体”?

就是让AI明确知道:

  • 你要它做什么(任务类型:写、总结、翻译、生成列表……)

  • 内容主题是什么(领域、关键词、核心信息)

  • 输出格式和细节(字数、风格、结构、限制条件)

对比例子:

❌ 模糊指令:“写点关于健康饮食的。”

✅ 清晰指令:“用通俗易懂的语言,列出5条适合上班族的健康饮食建议,每条不超过20字,重点强调‘省时’和‘营养均衡’。”

如何做到“清晰具体”?

明确任务类型

直接告诉AI要完成的具体动作,比如:

  • “写一篇…”

  • “总结以下内容…”

  • “将这段文字翻译成英文…”

  • “生成一个关于XX的列表…”

例:

❌ “说说人工智能。”

✅ “用简单的语言解释人工智能是什么,举2个日常生活中的应用例子。”

限定主题和范围

避免宽泛话题,聚焦到具体细分领域。

例:

❌ “介绍科技发展。”

✅ “介绍近5年智能手机技术的3个重要突破,重点说明折叠屏和快充技术。”

指定输出格式

包括字数、段落、列表、代码格式等。

例:

❌ “给我学习计划。”

✅ “制定一个7天Python入门学习计划,每天分‘上午理论’和‘下午实践’两部分,每部分不超过3个任务。”

定义风格和语气

比如:正式、幽默、口语化、学术风等。

例:

❌ “写个产品文案。”

✅ “写一个活泼的小红书风格文案,推荐一款蓝牙耳机,用emoji和短句,突出‘降噪’和‘颜值高’。”

添加约束条件

排除你不想要的内容,或设定限制。

例:

❌ “推荐几本书。”

✅ “推荐3本适合零基础学习心理学的书,不要教科书,优先推荐畅销书。”

反面案例 vs 优化后案例

模糊指令 清晰具体指令
“写个故事。” “写一个300字的悬疑微小说,主角是退休侦探,结局有反转,对话占比30%。”
“帮我修代码。” “下面的Python代码报错‘IndexError’,请指出错误原因并修复,用注释说明修改逻辑。”(附代码)
“画幅风景画。” “用赛博朋克风格画一幅未来城市夜景,霓虹灯为主色调,包含飞行汽车和全息广告牌。”

2.3 结构化拆分

结构化拆分是处理复杂任务的核心方法,通过将大问题拆解成小步骤,引导AI分阶段输出,避免信息过载或逻辑混乱。

为什么要用结构化拆分?

  • 减少AI“脑补”:复杂任务容易让AI自由发挥,拆分后更可控。

  • 逻辑更清晰:像写论文先列大纲,再填充内容,避免遗漏重点。

  • 方便迭代修改:某一步不满意可单独调整,无需重做全部。

对比案例

模糊指令:“写一份新能源汽车行业分析报告。”

结构化拆分

  1. 第一步:列出新能源汽车行业的3个关键趋势(用bullet points)。

  2. 第二步:针对每个趋势,分析1家代表公司的战略(如特斯拉、比亚迪、蔚来)。

  3. 第三步:总结未来2年的挑战和机会,字数不超过300字。

结构化拆分的3种常用方法

时间/流程顺序

按步骤拆分,适合教程、操作指南类任务。 示例

“如何用Photoshop抠图?请分步骤说明:

  1. 第一步:打开图片后选择什么工具?

  2. 第二步:如何精确选取要保留的区域?

  3. 第三步:导出透明背景图的正确格式是什么?”

逻辑模块拆分

将任务分解为并列的模块,适合分析、策划类任务。

示例

“分析星巴克的成功因素,按以下结构输出:

  • 产品策略:爆款单品和标准化流程

  • 用户体验:第三空间理论的应用

  • 营销手段:社交媒体玩法案例”

提问式引导

通过连续提问控制AI输出节奏。

示例

“我想开一家奶茶店,请按顺序回答:

  1. 选址最需要关注的3个数据指标是什么?

  2. 新手应该自营还是加盟?各有什么优缺点?

  3. 列出5个控制成本的实操建议。”

高阶技巧:嵌套式拆分

对于超复杂任务,可多层拆解(类似思维导图)。

案例:策划一场营销活动

第一层拆分

  1. 活动目标设定

  2. 受众分析

  3. 渠道选择

  4. 预算分配

第二层细化(以“受众分析”为例):

  • 核心用户画像(年龄/兴趣/痛点)

  • 竞品用户对比

  • 调研方法建议(问卷/访谈)

最终指令

“分阶段策划一场七夕节珠宝促销活动:

阶段1:目标设定(提升销量还是品牌曝光?)

阶段2:受众分析(列出3类目标客户特征)

阶段3:渠道规划(线上+线下具体执行方案) 每个阶段用200字概括,并附1个数据参考建议。”

不同场景的拆分案例

场景 结构化指令示例
论文写作 “1. 先确定5个关键词;2. 根据关键词搜3篇文献;3. 对比文献观点并总结争议点。”
产品设计 “1. 用户痛点列表;2. 功能优先级排序;3. 低保真原型描述。”
旅行计划 “1. 列出必去景点;2. 按地理位置规划每日路线;3. 推荐附近餐厅和交通方式。”
代码调试 “1. 描述报错信息;2. 推测可能原因;3. 给出修改建议。”

常见错误与修正

错误1:拆分过细

“写文章分10步:第一步写标题,第二步写第一句…”

修正

按“大纲-段落-润色”三阶段拆分,每阶段保留灵活空间。

错误2:缺乏衔接

拆分后各步骤独立,导致整体逻辑断裂。
修正
添加过渡要求,如“第二步需引用第一步的结论”。

错误3:忽略优先级

所有步骤平铺直叙,未突出核心。

修正

明确主次,例如“先解决成本问题,再讨论用户体验”。

万能模板

分[X]步完成[任务]:

  1. 第一步:[具体动作] → 预期输出要求

  2. 第二步:[依赖上一步的动作] → 格式/长度限制

  3. 第三步:[最终整合] → 风格/排除事项”**

实战案例

“分3步生成短视频脚本:

1. **选题**:根据‘打工人解压’主题列出3个创意方向;
2. **脚本**:选择1个方向写分镜(包含台词+画面描述);
3. **优化**:加入反转结局和2个热门梗#。”

结构化拆分的底层逻辑

  • 匹配AI的“思维链”特点:模仿人类逐步推理过程(Chain-of-Thought)。

  • 降低token负担:避免单次提示过长导致信息丢失。

  • 可复用框架:同类任务只需替换关键词(如分析行业A→行业B)。

一句话总结把AI当作“分步骤执行”的助手,而非“一次性给答案”的魔法箱,拆分越合理,结果越精准!

试试用这个方法让AI帮你写方案、做计划,你会发现它的“条理性”瞬间提升几个Level! 🧩

三、角色设定

3.1 为什么需要角色设定?

  • 避免通用化回答:默认状态下,AI会给出"中庸"答案,角色设定能聚焦专业领域。

  • 调整语言风格:科学家说话严谨,段子手语言幽默,角色能改变表达方式。

  • 增强可信度:AI会模拟该角色的知识储备和视角(尽管本质仍是概率模型)。

对比案例

普通提问:"如何写一篇作文?"

角色设定:"你是一位有20年经验的语文老师,教初中生如何写好记叙文,重点讲解‘如何用细节描写增强画面感’。"


3.2 角色设定的3个关键维度

(1)身份/职业

明确AI的"人设",例如:

  • 专业型:医生、律师、程序员、金融分析师

  • 创意型:小说家、编剧、广告文案写手

  • 功能型:翻译官、Excel专家、求职顾问

示例

"你是一名资深跨境电商运营,用具体案例说明如何通过Facebook广告提升转化率,要求包含数据指标和优化技巧。"

(2)受众/对象

告诉AI面向谁输出,语言和深度会随之调整:

  • 面向小白:"用幼儿园小朋友能听懂的话解释光合作用"

  • 面向专业人士:"用学术语言分析量子纠缠的实验验证方法"

示例

"你是一名健身教练,为50岁以上的初学者设计一份安全有效的居家运动计划,避免关节损伤。" 

(3)风格/语气

通过角色传递表达风格:

  • 正式严谨:学术报告、法律文件

  • 轻松活泼:社交媒体文案、儿童故事

  • 煽动性:促销广告、竞选演讲

示例

### 使用 AutoGPTQ 库量化 Transformer 模型 为了使用 `AutoGPTQ` 对 Transformer 模型进行量化,可以遵循如下方法: 安装所需的依赖包是必要的操作。通过 pip 安装 `auto-gptq` 可以获取新版本的库。 ```bash pip install auto-gptq ``` 加载预训练模型并应用 GPTQ (General-Purpose Tensor Quantization) 技术来减少模型大小和加速推理过程是一个常见的流程。下面展示了如何利用 `AutoGPTQForCausalLM` 类来进行这一工作[^1]。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer from auto_gptq import AutoGPTQForCausalLM model_name_or_path = "facebook/opt-350m" quantized_model_dir = "./quantized_model" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) # 加载已经量化的模型或者创建一个新的量化器对象用于量化未压缩过的模型 gptq_model = AutoGPTQForCausalLM.from_pretrained(quantized_model_dir, model=model, tokenizer=tokenizer) ``` 对于那些希望进一步优化其部署环境中的模型性能的人来说,`AutoGPTQ` 提供了多种配置选项来自定义量化参数,比如位宽(bit-width),这有助于平衡精度损失与运行效率之间的关系。 #### 注意事项 当处理特定硬件平台上的部署时,建议查阅官方文档以获得佳实践指导和支持信息。此外,在实际应用场景之前应该充分测试经过量化的模型以确保满足预期的质量标准。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Calvad0s

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值