目录
一、提示词基础
1.1 什么是提示词?
-
定义:提示词是用户输入给AI模型(如ChatGPT、MidJourney等)的指令或问题,用于引导模型生成特定类型的输出。它是用户与AI交互的核心媒介。
-
作用:提示词的质量直接影响AI输出的准确性和相关性。好的提示词能明确任务边界、减少歧义,并激发模型的创造力。
提示词就是“给AI下指令的说明书”——越清楚、越具体,AI干得越好!价值: 帮你更快、更准地拿到想要的结果,不用和AI“猜谜语”。
1.2 人设与回复逻辑
# 角色
# 任务
# 能力
# 步骤
# 要求
# 限制
# 示例
二、提示词的设计技巧
2.1 七大提示词设计原则
原则 | 作用 | 示例 |
---|---|---|
1. 清晰具体 | 减少AI猜测,精准输出 | “写300字科普文,初中生能看懂” |
2. 结构化拆分 | 复杂任务分步完成 | “第一步…第二步…” |
3. 角色设定 | 让AI更专业/符合风格 | “你是一名资深律师…” |
4. 示例引导 | 模仿特定风格 | “参考这个文案风格…” |
5. 链式思考 | 展示推理过程 | “请分步骤解释…” |
6. 负面提示 | 排除无关内容 | “不要提及政治…” |
7. 参数调整 | 控制随机性/长度 | temperature=0.5 |
2.2 清晰具体
什么是“清晰具体”?
就是让AI明确知道:
-
你要它做什么(任务类型:写、总结、翻译、生成列表……)
-
内容主题是什么(领域、关键词、核心信息)
-
输出格式和细节(字数、风格、结构、限制条件)
对比例子:
❌ 模糊指令:“写点关于健康饮食的。”
✅ 清晰指令:“用通俗易懂的语言,列出5条适合上班族的健康饮食建议,每条不超过20字,重点强调‘省时’和‘营养均衡’。”
如何做到“清晰具体”?
明确任务类型
直接告诉AI要完成的具体动作,比如:
-
“写一篇…”
-
“总结以下内容…”
-
“将这段文字翻译成英文…”
-
“生成一个关于XX的列表…”
例:
❌ “说说人工智能。”
✅ “用简单的语言解释人工智能是什么,举2个日常生活中的应用例子。”
限定主题和范围
避免宽泛话题,聚焦到具体细分领域。
例:
❌ “介绍科技发展。”
✅ “介绍近5年智能手机技术的3个重要突破,重点说明折叠屏和快充技术。”
指定输出格式
包括字数、段落、列表、代码格式等。
例:
❌ “给我学习计划。”
✅ “制定一个7天Python入门学习计划,每天分‘上午理论’和‘下午实践’两部分,每部分不超过3个任务。”
定义风格和语气
比如:正式、幽默、口语化、学术风等。
例:
❌ “写个产品文案。”
✅ “写一个活泼的小红书风格文案,推荐一款蓝牙耳机,用emoji和短句,突出‘降噪’和‘颜值高’。”
添加约束条件
排除你不想要的内容,或设定限制。
例:
❌ “推荐几本书。”
✅ “推荐3本适合零基础学习心理学的书,不要教科书,优先推荐畅销书。”
反面案例 vs 优化后案例
模糊指令 | 清晰具体指令 |
---|---|
“写个故事。” | “写一个300字的悬疑微小说,主角是退休侦探,结局有反转,对话占比30%。” |
“帮我修代码。” | “下面的Python代码报错‘IndexError’,请指出错误原因并修复,用注释说明修改逻辑。”(附代码) |
“画幅风景画。” | “用赛博朋克风格画一幅未来城市夜景,霓虹灯为主色调,包含飞行汽车和全息广告牌。” |
2.3 结构化拆分
结构化拆分是处理复杂任务的核心方法,通过将大问题拆解成小步骤,引导AI分阶段输出,避免信息过载或逻辑混乱。
为什么要用结构化拆分?
-
减少AI“脑补”:复杂任务容易让AI自由发挥,拆分后更可控。
-
逻辑更清晰:像写论文先列大纲,再填充内容,避免遗漏重点。
-
方便迭代修改:某一步不满意可单独调整,无需重做全部。
对比案例:
❌ 模糊指令:“写一份新能源汽车行业分析报告。”
✅ 结构化拆分:
-
第一步:列出新能源汽车行业的3个关键趋势(用bullet points)。
-
第二步:针对每个趋势,分析1家代表公司的战略(如特斯拉、比亚迪、蔚来)。
-
第三步:总结未来2年的挑战和机会,字数不超过300字。
结构化拆分的3种常用方法
时间/流程顺序
按步骤拆分,适合教程、操作指南类任务。 示例:
“如何用Photoshop抠图?请分步骤说明:
第一步:打开图片后选择什么工具?
第二步:如何精确选取要保留的区域?
第三步:导出透明背景图的正确格式是什么?”
逻辑模块拆分
将任务分解为并列的模块,适合分析、策划类任务。
示例:
“分析星巴克的成功因素,按以下结构输出:
产品策略:爆款单品和标准化流程
用户体验:第三空间理论的应用
营销手段:社交媒体玩法案例”
提问式引导
通过连续提问控制AI输出节奏。
示例:
“我想开一家奶茶店,请按顺序回答:
选址最需要关注的3个数据指标是什么?
新手应该自营还是加盟?各有什么优缺点?
列出5个控制成本的实操建议。”
高阶技巧:嵌套式拆分
对于超复杂任务,可多层拆解(类似思维导图)。
案例:策划一场营销活动
第一层拆分:
-
活动目标设定
-
受众分析
-
渠道选择
-
预算分配
第二层细化(以“受众分析”为例):
-
核心用户画像(年龄/兴趣/痛点)
-
竞品用户对比
-
调研方法建议(问卷/访谈)
最终指令:
“分阶段策划一场七夕节珠宝促销活动:
阶段1:目标设定(提升销量还是品牌曝光?)
阶段2:受众分析(列出3类目标客户特征)
阶段3:渠道规划(线上+线下具体执行方案) 每个阶段用200字概括,并附1个数据参考建议。”
不同场景的拆分案例
场景 | 结构化指令示例 |
---|---|
论文写作 | “1. 先确定5个关键词;2. 根据关键词搜3篇文献;3. 对比文献观点并总结争议点。” |
产品设计 | “1. 用户痛点列表;2. 功能优先级排序;3. 低保真原型描述。” |
旅行计划 | “1. 列出必去景点;2. 按地理位置规划每日路线;3. 推荐附近餐厅和交通方式。” |
代码调试 | “1. 描述报错信息;2. 推测可能原因;3. 给出修改建议。” |
常见错误与修正
❌ 错误1:拆分过细
“写文章分10步:第一步写标题,第二步写第一句…”
✅ 修正:
按“大纲-段落-润色”三阶段拆分,每阶段保留灵活空间。
❌ 错误2:缺乏衔接
拆分后各步骤独立,导致整体逻辑断裂。
✅ 修正:
添加过渡要求,如“第二步需引用第一步的结论”。
❌ 错误3:忽略优先级
所有步骤平铺直叙,未突出核心。
✅ 修正:
明确主次,例如“先解决成本问题,再讨论用户体验”。
万能模板
分[X]步完成[任务]:
-
第一步:[具体动作] → 预期输出要求
-
第二步:[依赖上一步的动作] → 格式/长度限制
-
第三步:[最终整合] → 风格/排除事项”**
实战案例:
“分3步生成短视频脚本:
1. **选题**:根据‘打工人解压’主题列出3个创意方向;
2. **脚本**:选择1个方向写分镜(包含台词+画面描述);
3. **优化**:加入反转结局和2个热门梗#。”
结构化拆分的底层逻辑
-
匹配AI的“思维链”特点:模仿人类逐步推理过程(Chain-of-Thought)。
-
降低token负担:避免单次提示过长导致信息丢失。
-
可复用框架:同类任务只需替换关键词(如分析行业A→行业B)。
一句话总结: 把AI当作“分步骤执行”的助手,而非“一次性给答案”的魔法箱,拆分越合理,结果越精准!
试试用这个方法让AI帮你写方案、做计划,你会发现它的“条理性”瞬间提升几个Level! 🧩
三、角色设定
3.1 为什么需要角色设定?
-
避免通用化回答:默认状态下,AI会给出"中庸"答案,角色设定能聚焦专业领域。
-
调整语言风格:科学家说话严谨,段子手语言幽默,角色能改变表达方式。
-
增强可信度:AI会模拟该角色的知识储备和视角(尽管本质仍是概率模型)。
对比案例:
❌ 普通提问:"如何写一篇作文?"
✅ 角色设定:"你是一位有20年经验的语文老师,教初中生如何写好记叙文,重点讲解‘如何用细节描写增强画面感’。"
3.2 角色设定的3个关键维度
(1)身份/职业
明确AI的"人设",例如:
-
专业型:医生、律师、程序员、金融分析师
-
创意型:小说家、编剧、广告文案写手
-
功能型:翻译官、Excel专家、求职顾问
示例:
"你是一名资深跨境电商运营,用具体案例说明如何通过Facebook广告提升转化率,要求包含数据指标和优化技巧。"
(2)受众/对象
告诉AI面向谁输出,语言和深度会随之调整:
-
面向小白:"用幼儿园小朋友能听懂的话解释光合作用"
-
面向专业人士:"用学术语言分析量子纠缠的实验验证方法"
示例:
"你是一名健身教练,为50岁以上的初学者设计一份安全有效的居家运动计划,避免关节损伤。"
(3)风格/语气
通过角色传递表达风格:
-
正式严谨:学术报告、法律文件
-
轻松活泼:社交媒体文案、儿童故事
-
煽动性:促销广告、竞选演讲
示例