题目描述:
解法:动态规划
(dp[i][j] : 存储 s1[0..i-1] 和 s2[0..j-1] 的最小编辑距离)
class Solution {
//dp[i][j] : 存储 s1[0..i-1] 和 s2[0..j-1] 的最小编辑距离
public int minDistance(String word1, String word2){
int len1 = word1.length(), len2 = word2.length();
int[][] dp = new int[len1 + 1][len2 + 1];
for(int i = 1; i <= len1; i++){
dp[i][0] = i;
}
for(int j = 1;j <= len2; j++){
dp[0][j] = j;
}
// 自底向上求解
for(int i = 1;i <= len1; i++){
for(int j = 1;j <= len2; j++){
if(word1.charAt(i - 1) == word2.charAt(j - 1)){
dp[i][j] = dp[i-1][j-1];
}
else{
dp[i][j] = min(dp[i-1][j] + 1, //删除
dp[i][j-1] + 1, //插入
dp[i-1][j-1] + 1 //替换
);
}
}
}
//储存着整个 s1 和 s2 的最小编辑距离
return dp[len1][len2];
}
public int min(int a, int b, int c){
return Math.min(a, Math.min(b, c));
}
}