基于LSTM电商评论情感分析-多评价指标可视化版(内附源码)【自然语言处理NLP-100例】

K同学介绍了基于LSTM的电商评论情感分析,增加了多种评价指标的可视化,并在数据预处理阶段进行了分词、去除停用词、Word2vec处理,同时提供了训练集和测试集的划分。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


大家好,我是K同学啊!

上一篇文章中,我使用LSTM对电商评论做了一个较为复杂的情感分析,本文就继续上次的工作做进一部分的分析。本次主要是在评价指标metrics处增加了PrecisionRecallAUC等值,实现了训练模型的同时记录这些指标,是实现方式上与以往也有所不同。与此同时,本次全连接层Dense的输出也被设置为1,之前很少这样操作的,可以对这块针对性学习一下。

LSTM(Long Short-Term Memory)是一种递归神经网络,常用于处理序列数据,如文本、语音和时间序列预测等。在训练LSTM模型时,常用的评价指标包括准确率(Accuracy)、精确率(Precision)、召回率(Recall)、F1分数(F1 Score)以及困惑度(Perplexity)。 1. 准确率(Accuracy): 表示正确预测的比,计算公式为 `Accuracy = (TP + TN) / (TP + TN + FP + FN)`,其中 TP(True Positive)是真正,TN(True Negative)是真负,FP(False Positive)是假正,FN(False Negative)是假负。 2. 精确率(Precision): 指预测为正类中实际为正类的比,计算公式为 `Precision = TP / (TP + FP)`。 3. 召回率(Recall): 表示实际为正类被正确识别的比,计算公式为 `Recall = TP / (TP + FN)`。 4. F1分数(F1 Score): 是精确率和召回率的调和平均数,综合了两者的性能,计算公式为 `F1 = 2 * (Precision * Recall) / (Precision + Recall)`。 5. 困惑度(Perplexity): 主要在语言模型中衡量预测序列的能力,越低表示模型越好。对于连续预测任务,困惑度定义为 `Perplexity = exp(-1 / n * Σ(log(p(x_i|x_{<i}))))`,其中 n 是句子长度,p(x_i|x_{<i}) 是模型对第i个词的概率估计。 这些指标在训练过程中会交替优化,以找到最佳的模型性能。在使用LSTM模型时,选择哪个指标取决于具体的应用场景,如,如果关注整体分类正确性,可以选择准确率;如果重视识别特定类别的重要性,可能会更关注精确率或召回率。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

K同学啊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值