YOLOv5解析 | 绘制results.csv文件数据对比图

本文介绍了如何使用代码生成YOLOv5训练结果的mAP_0.5对比图,适用于论文中展示实验效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

功能描述

我们在写论文过程中,通常是需要附带上改进后YOLOv5算法改进前YOLOv5算法的mAP_0.5值对比图,可以使用下面的代码来生成这个对比图。

代码实现

import csv
import matplotlib.pyplot as plt
import pandas as pd
import numpy  as np
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False    # 用来正常显示负号
df1 = pd.read_csv("results1.csv")   #读取文件1
df2 = pd.read_csv("results2.csv")   #读取文件2

epoch_1 = df1["               epoch"].values.tolist()                     #通过文件表头信息读取文件内容
mAP5_1  = df1["     metrics/mAP_0.5"].values.tolist()

epoch_2 = df2["               epoch"].values.tolist()                     #通过文件表头信息读取文件内容
mAP5_2  = df2["     metrics/mAP_0.5"].values.tolist()

plt.figure(figsize=(8, 5))
plt.plot(epoch_1,mAP5_1,color='red',  label='yolov5s改进算法')       #设置曲线相关系数
plt.plot(epoch_2,mAP5_2,color='black',label='yolov5s原始算法')       #设置曲线相关系数

plt.xticks(fontsize=10)
plt.yticks(fontsize=10)

plt.ylim(0, 1)
plt.xlim(0, 100)                        #设置坐标轴取值范围
plt.xlabel('epochs', fontsize=14)
plt.ylabel('mAP_0.5', fontsize=14)
plt.legend(fontsize=12,loc="best") #设置标签位置及大小
plt.savefig("test.png",bbox_inches='tight')
plt.show()

在这里插入图片描述

评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

K同学啊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值