用代码yolov5生成改进前后map曲线对比图,map0.5,map0.5:0.95,很简单,小白都能看懂!

该代码段展示了如何使用Python读取CSV文件中的数据,绘制YOLOv5在不同Epoch的mAP@0.5和mAP@0.5:0.95曲线,对比原版和优化后的模型性能。通过曲线图,可以看出改进后的YOLOv5在目标检测的精度上有何提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

用代码yolov5生成map曲线对比图,map0.5,map0.5:0.95

map曲线对比图

map0.5
0.95
重点csv文件在runs/train/exp中!!

import pandas as pd
import matplotlib.pyplot as plt

# Function to clean column names
def clean_column_names(df):
    df.columns = df.columns.str.strip()
    df.columns = df.columns
### YOLOv8模型训练过程中曲线的绘制方法 YOLOv8 是一种高效的实时目标检测算法,其训练过程通常会生成多种性能指标曲线,例如 mAP(平均精度均值)、PR(精确率-召回率)等。然而,默认情况下,YOLOv8 的源码所生成曲线可能无法满足高质量文档的需求[^1]。 #### 使用 Python 绘制曲线 如果希望使用 Python 来绘制更清晰的曲线,可以通过读取 YOLOv8 训练日志文件并利用 Matplotlib 库实现自定义绘功能。以下是具体代码示例: ```python import matplotlib.pyplot as plt import pandas as pd # 加载训练日志数据 log_data = pd.read_csv('runs/train/exp/results.csv') # 提取需要的数据列 epochs = log_data['epoch'] mAP = log_data['metrics/mAP_0.5'] precision = log_data['metrics/precision'] recall = log_data['metrics/recall'] # 创建形对象 plt.figure(figsize=(10, 6)) # 绘制 mAP 曲线 plt.plot(epochs, mAP, label='mAP', color='blue') # 绘制 Precision 曲线 plt.plot(epochs, precision, label='Precision', color='green') # 绘制 Recall 曲线 plt.plot(epochs, recall, label='Recall', color='red') # 设置表属性 plt.title('Training Metrics over Epochs') plt.xlabel('Epochs') plt.ylabel('Metrics Value') plt.legend() plt.grid(True) # 显示或保存像 plt.savefig('training_metrics.png', dpi=300) plt.show() ``` 上述代码通过加载 `results.csv` 文件中的数据来绘制 mAP、Precision 和 Recall 随 epoch 变化的趋势,并将其导出为高分辨率片以便后续处理。 #### 使用 MATLAB 进行高级绘 对于更高要求的情况,可以选择 MATLAB 完成绘工作。MATLAB 支持直接复制窗至 Word 文档中而不失真,非常适合用于学术论文或其他正式场合下的插需求[^2]。下面是一个简单的 MATLAB 脚本例子: ```matlab % 导入 CSV 数据 data = readtable('runs/train/exp/results.csv'); % 获取所需列 epochs = data.epoch; mAP = data.('metrics/mAP_0.5'); precision = data.metrics_precision; recall = data.metrics_recall; % 新建形窗口 figure; % 绘制 PR 曲线 plot(precision, recall, 'LineWidth', 2); hold on; % 同一坐标系下继续画其他曲线 % 添加标注 xlabel('Precision'); ylabel('Recall'); title('Precision-Recall Curve'); legend('Model Performance'); grid on; % 复制到剪贴板供粘贴进 Word 中 copyobj(gca, findobj(gcf,'type','axes')); print('-dmeta','-clipboard'); % 将当前 figure 发送到 Windows 剪切板 ``` 此脚本实现了从指定路径读取结果文件并绘制 PR 曲线的功能,同时提供了便捷的方式将最终成果嵌入 Microsoft Office 系统内的应用程序里去。 #### 总结 无论是采用 Python 编程环境还是切换到 MATLAB 工具箱来进行可视化操作,都可以显著提升由 YOLOv8 所产生的各类统计数值的表现形式质量。选择哪种方式取决于个人偏好以及项目特定的要求条件。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值