用代码yolov5生成改进前后map曲线对比图,map0.5,map0.5:0.95,很简单,小白都能看懂!

该代码段展示了如何使用Python读取CSV文件中的数据,绘制YOLOv5在不同Epoch的mAP@0.5和mAP@0.5:0.95曲线,对比原版和优化后的模型性能。通过曲线图,可以看出改进后的YOLOv5在目标检测的精度上有何提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

用代码yolov5生成map曲线对比图,map0.5,map0.5:0.95

map曲线对比图

map0.5
0.95
重点csv文件在runs/train/exp中!!

import pandas as pd
import matplotlib.pyplot as plt

# Function to clean column names
def clean_column_names(df):
    df.columns = df.columns.str.strip()
    df.columns = df.columns
### YOLOv8 改进前后性能曲线对比分析 #### 性能指标概述 为了全面理解YOLOv8改进前后的变化,通常会关注几个核心性能指标:mAP (mean Average Precision),推理时间(Inference Time),以及模型参数数量(Parameters)。这些指标能够有效反映模型在不同场景下的表现。 #### 原始YOLOv8的表现 原始版本的YOLOv8已经在多个公开数据集上展示了出色的检测能力,在COCO测试开发集上的mAP达到了一定水平[^1]。然而,随着计算机视觉领域的发展和技术的进步,对于更高精度和更低延迟的需求促使研究人员不断探索优化路径。 #### ASF-YOLO带来的改进 ASF-YOLO引入了Attentional Scale Sequence Fusion机制,该方法通过对不同尺度特征施加注意力权重的方式增强了跨层次的信息交互效率。实验结果显示,这种改进显著提升了小物体识别率并改善了整体定位准确性。 #### iAFF模块的作用 iAFF(Improved Attention Feature Fusion)作为另一个重要的组成部分,通过自适应调整通道间的重要性程度来强化关键区域响应强度的同时抑制背景噪声干扰。这不仅提高了特征表达的质量,还使得网络能够在复杂背景下更加稳健地工作[^2]。 #### PConv与FastNet的影响 PConv部分卷积技术配合FastNet结构进一步加速了训练过程而不牺牲太多准确度。具体来说,这种方法允许某些特定条件下跳过不必要的计算步骤从而节省资源消耗;与此同时,得益于精心设计的基础组件组合方式,即使是在硬件条件受限的情况下也能维持较高的运算效能[^3]。 #### 综合效果展示 以下是基于上述提到的各种改进措施所形成的YOLOv8新旧版性能差异表: ![Performance Comparison](https://example.com/performance_comparison.png) 请注意,实际像链接需替换为真实存在的片地址。此直观呈现了经过一系列技术创新之后的新一代YOLOv8相较于原版而言取得了明显进步——无论是平均精确度还是处理速度方面均有不同程度的增长。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值