torch笔记十三 | 卷积网络

1. 卷积层

概念
对全连接层使用平移不变性和局部性得到卷积层。卷积层将输入和核矩阵进行交叉相关,加上偏移后得到输出。核矩阵和偏移是可学习的参数;核矩阵的大小、填充(通常为核减一)、步幅是超参数。
在这里插入图片描述

维度的变化

步长为1的时候,输入X:h x w
核W:a x b
输出Y:(h-a+1)x(w-b+1)

填充

在输入周围添加额外的行/列,控制输出的减少量。填充P行Q列,输出的形状为:(h-a+P+1)x(w-b+Q+1)。通常取P=a-1,Q=b-1,(填充数通常为卷积核大小减1)使得输出形状保持不变。当a为奇数的时候,在上下两侧各填充padding=P/2;当a为偶数的时候(其实很少使用边长为偶数的卷积核),在上下两侧中,有一侧多一行。深度学习框架中的padding=1,表示在图的四周都添加一层0。

步幅

步幅是指行/列的滑动步长,可以成倍地减少输出的形状。给定高度s1和宽度s2的步幅,输出的形状是[(h-a+P+s1)/s1] x [(w-b+Q+s2)/s2]。如果P=a-1,Q=b-1,(填充数为卷积核大小减1),输出的形状是[(h-a-1)/s1] x [(w-b-1)/s2];如果输入高度和宽度可以被步幅整除,输出形状为(h/s1)x(w/s2)。

多输入多输出通道

彩色图像RGB三个通道,转为灰度会丢失信息。

多个输入通道:每个通道都有一个卷积核,那么相应通道和相应的卷积核做卷积计算,然后按元素相加,结果是所有通道卷积结果的和。

多个输出通道(以RGB图像为例):对每一个输出通道都有一个三维卷积核,计算得到每个输出通道中三维卷积核的数值。每一个输出通道可以认为是识别某一个特定的模式;将每个输出通道输入到下一层,加权求和。

例子:输入一张猫的原始图片,前面的层一般识别一些角度的边,胡须耳朵纹理等信息,后面的层会不断的把纹理组合起来,比如一个通道识别出来的是猫头,眼睛等,再往后最后一层就识别出这是一只猫。

1x1卷积层

卷积核的高和宽都是1,每次只看一个像素,不改变特征图的高和宽。不会识别空间信息,只是融合通道,使得每个输出通道的数值都是输入通道对应位置数值的加权和,相当于一个全连接层。

卷积核膨胀(dilation)

如果我们设置的dilation=0的话,左图。蓝色为输入,绿色为输出,可见卷积核为3x3的卷积核。如果我们设置的是dilation=1,那么效果如图蓝色为输入,绿色为输出,卷积核仍为3x3,但是这里卷积核点与输入之间距离为1的值相乘来得到输出。
在这里插入图片描述在这里插入图片描述

好处:这样单次计算时覆盖的面积(即感受域)由dilation=0时的3*3=9变为了dilation=1时的5x5=25。在增加了感受域的同时却没有增加计算量,保留了更多的细节信息,对图像还原的精度有明显的提升。

池化层

有窗口大小、填充和步幅超参数;返回窗口中的最大或者平均;可以缓解卷积层对位置的敏感性。

机器学习本质上来说就是一个压缩算法,输入一张图片输出一个值。
一般来说,不会手写神经网络,常套用和修改经典的网络结构,使用ResNet居多
一般特征图长宽减半的同时,通道数扩大到两倍。

2. LeNet网络

90年代,神经网络第一次兴起。1998年提出LeNet网络。思想:先使用卷积层来学习图片空间信息,然后使用全连接层来转换到类别空间。

实现

import torch
from torch import nn, optim
import torch.utils.data as Data
import torchvision.transforms as transforms
import torchvision
import sys
import time

# 1.读入数据集

mnist_train = torchvision.datasets.FashionMNIST(root=".", train=True, download=True,
                                                transform=transforms.ToTensor())

mnist_test = torchvision.datasets.FashionMNIST(root=".", train=False, download=True,
                                               transform=transforms.ToTensor())
batch_size = 256
if sys.platform.startswith("win"):
    num_workers = 0
else:
    num_workers = 8
train_iter = Data.DataLoader(mnist_train, batch_size=batch_size, shuffle=True, num_workers=num_workers)
test_iter = Data.DataLoader(mnist_test, batch_size=batch_size, shuffle=False, num_workers=num_workers)

# 2.搭建lenet
class LeNet(nn.Module):
    def __init__(self):
        super(LeNet, self).__init__()
        self.c1 = nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5)
        self.a1 = nn.Sigmoid()
        self.p1 = nn.MaxPool2d(kernel_size=2, stride=2)

        self.c2 = nn.Conv2d(6, 16, 5)
        self.a2 = nn.Sigmoid()
        self.p2 = nn.MaxPool2d(2, 2)

        self.l1 = nn.Linear(16*4*4, 120)
        self.a3 = nn.Sigmoid()
        self.l2 = nn.Linear(120, 84)
        self.a4 = nn.Sigmoid()
        self.l3 = nn.Linear(84, 10)

    def forward(self, x):
        x = self.c1(x)
        x = self.a1(x)
        x = self.p1(x)

        x = self.c2(x)
        x = self.a2(x)
        x = self.p2(x)

        x = x.view(x.shape[0], -1)      # 将特征图拉直
        x = self.l1(x)
        x = self.a3(x)
        x = self.l2(x)
        x = self.a4(x)
        y = self.l3(x)
        return y
net = LeNet()
net = net.cuda(0)					# 将net放到GPU

# 3.配置方法
loss = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=0.01)

# 4.训练
start = time.time()
for epoch in range(10):
    for X, y in train_iter:
        X, y = X.cuda(), y.cuda()	# 将tensor放到GPU
        out = net(X)
        l = loss(out, y)
        optimizer.zero_grad()
        l.backward()
        optimizer.step()
    print("epoch: %d    loss: %f" % (epoch, l.item()))
print("time: %f" % (time.time()-start))

3. AlexNet

在2000年时,机器学习最火的是核方法。神经网络被核方法取代,原因:① 核方法有一套完整的泛函过来的数学定理,能够计算复杂度等等,学术界喜欢理论;② 神经网络深的东西做不动了。过程:提取特征、选择核函数计算相关性、凸优化问题、漂亮的定理。

2010年,数据量的增加和计算能力的提升,神经网络再次兴起。李飞飞等提出了ImageNet数据集(2010),包含了自然物体的彩色图片。2012年提出的AlexNet,夺得冠军,其实就是更深更大的LeNet(复杂度包括参数个数、运算次数),标志着新一轮的神经网络热潮的开始。主要改进:丢弃法、ReLu、MaxPooling。引起了计算机视觉方法论的改变。之前,图像->人工特征提取->机器学习模型(SVM);现在,图像->通过CNN学习特征->Softmax回归,后面的两个模型在一起训练更加高效,端到端,从原始的pixel、字符串、信号等到最终的分类、预测直接通过神经网络直接过去。

架构

更大的核窗口和步长,因为图片更大了。更大的池化窗口,使用最大池化层。2x2池化可以理解为一个像素可以往一边移动一点,不影响结果;3x3池化可以理解为像素往左往右移动一下,不影响输出。

激活函数从Sigmoid变到了ReLu(减缓梯度消失),隐藏全连接层后加入了丢弃层,数据增强(随即裁剪、随机亮度、色温)。卷积对位置,亮度比较敏感,在输入里面增加大量的变种,在训练的时候模拟这种变化,使得网络对这些因素不敏感。神经网络能记住所有数据,这样做可以使得记住的能力变低。

4. VGG

AlexNet比LeNet更深更大来得到更好的精度,能不能更深更大?选项:

  • 更多的全连接层(太贵)
  • 更多的卷积层
  • 将卷积层组合成块

VGG块

3x3卷积(超参数是n层,m通道),2x2最大池化

架构

多个VGG块后接全连接层,VGG使用可重复使用的卷积块来构建深度卷积网络,不同次数的重复块和超参数得到不同的架构,VGG-16(13个卷积层,3个全连接层),VGG-19。

PS:

训练loss一直下降,测试loss不降原因:① 测试代码写错了。② 测试集和数据集相差比较大,确实长得很不一样。

测试acc是有可能大于训练acc的,当训练数据比较多,数据增强加入的噪声比较多的时候,测试acc比训练acc高是很正常的。

5. 小结

LeNet:2个 卷积+池化层, 2个全连接层

AlexNet:更大更深,ReLu,Dropout,数据增强

VGG:更深更大的AlexNet(重复的VGG块)

6. 网络中的网络(NiN)

现在很少使用。卷积层需要较少的参数(输入通道数x输出通道数x高x宽),但卷积层的第一个全连接层的参数(通道数x宽x高x全连接神经元个数)较多,可能会带来过拟合。思想就是完全不用全连接层。

NiN块

一个卷积层后跟两个1x1卷积层(相当于全连接层)。注意1x1的卷积层(步幅1,无填充),不改变输出高宽,对于每个像素做全连接,对每个像素增加了非线性性,可以等价于全连接层。

架构

无全连接层;交替使用NiN块和步幅为2的最大池化层,逐步减小高宽和增大通道数;最后使用全局平均池化层得到输出(输入通道数需要是类别数)。不容易过拟合,更少的参数个数。

7. 含并行连结的网络(GoogLeNet )

Inception块:小学生才做选择题,我全要了。有4条不同超参数的卷积层和池化层的路,4个路径从不同的层面抽取信息,每条路上通道数可能不同,降低通道数来控制模型复杂度,输入输出等高等宽,然后在输出通道维堆在一起。

结构:(假设输入192x28x28)

  • 1x1 conv。192-64
  • 1x1 conv,3x3 conv。192-96-128
  • 1x1 conv,5x5 conv。192-16-32
  • 3x3 maxpooling,1x1 conv。192-192-32

输出:256x28x28。跟单3x3或5x5卷积层相比,Inception块有更少的参数个数和计算复杂度。

GoogLeNet:5个stage(高宽减半为一个stage),9个Inception块。是第一个达到上百层的网络,后续有一系列的变种改进(V3,V4)

8. 批量归一化

当神经网络比较深的时候,数据在网络底部传入,损失在网络顶部计算,出现在最后,而使用BP算法,误差反向传播,后面的层训练比较快。底部的层训练的比较慢,而底层(抽取物体的边缘啊纹理啊等底层特征)一变化,后面所有的都要跟着变化,使得最后的那些层需要重新学习多次,导致收敛变慢。我们可以在学习底部层的时候避免变化顶部层吗?

为什么会发生变化呢?原因是数据的方差均值的分布在不同层之间变化。批量归一化尝试把minibatch里面的均值和方差固定住,固定每层的输出和梯度的分布,相对来说比较稳定。首先,计算均值和方差,然后再做额外的调整(可学习的参数):

x i + 1 = γ x i − μ B σ B + β x_{i+1}=\gamma \frac{x_{i}-\mu_{B} }{\sigma _{B}}+\beta xi+1=γσBxiμB+β

可学习的参数为 γ \gamma γ β \beta β,作用在全连接和卷积层输出上,激活函数前。批量归一化是一个线性变换,对全连接层,作用在特征维;对卷积层,作用在通道维。它可能就是通过在每个小批量里加入噪声来控制模型复杂度(随机偏移,随机缩放)。因此没必要跟丢弃法混合使用。BN只一般用于深层网络,浅层MLP加上BN效果并不明显。

批量归一化固定小批量中的均值和方差,然后学习出适合的偏移和缩放;可以加速收敛速度,但一般不改变模型精度。直观理解:用了BN之后,发现可以使用较大的学习率,对每层的均值和方差都放到一起了,就不会出现学习率太大的话,上面的层梯度比较大炸掉了;学习率太小的话,下面的层梯度太小算不动。现在把每层的输入都放到一个差不多的分布里面,可以统一使用一个大一些的学习率。

9.残差网络(ResNet)

残差块加入快速通道来得到f(x)=x+g(x)的结构。高宽减半ResNet块时,需要快速通道上有1x1的卷积改变通道数。架构:5个stage。ResNet152(152个卷积层)、101、50、34、18。

残差块使得很深的网络更加容易训练,由于连接的存在,不管网络再深,也能把下面小层的先训练好,甚至可以训练一千层的网络。残差网络的跳跃连接对随后的深层神经网络设计产生了深远影响,很多网络都采用跳跃连接。

import torch
import torch.nn as nn
import numpy as np
from torch.nn import functional as F


# 1. 残差块
class Residual(nn.Module):
    def __init__(self, input_channels, num_channels, use_1x1conv=False, strides=1):# 输入通道数,输出通道数,快速通道是否使用1x1卷积层,第一个卷积层的步长(控制是否宽高减半)
        super(Residual, self).__init__()
        # 第一个卷积层
        self.conv1 = nn.Conv2d(input_channels, num_channels, kernel_size=3,
                               padding=1, stride=strides)
        # 第二个卷积层
        self.conv2 = nn.Conv2d(num_channels, num_channels, kernel_size=3,
                               padding=1)
        # 快速通道卷积
        if use_1x1conv:
            self.conv3 = nn.Conv2d(input_channels, num_channels, kernel_size=1,
                                   stride=strides)
        else:
            self.conv3 = None
        self.bn1 = nn.BatchNorm2d(num_channels)
        self.bn2 = nn.BatchNorm2d(num_channels)
        self.relu = nn.ReLU(inplace=True)  # inplace节省内存

    def forward(self, X):
        Y = F.relu(self.bn1(self.conv1(X)))
        Y = self.bn2(self.conv2(Y))
        if self.conv3:
            X = self.conv3(X)
        Y += X
        return F.relu(Y)


# 1.输入和输出形状一致
blk = Residual(input_channels=3, num_channels=3)
# 2.增加输出通道数的同时,减半输出的高和宽
blk = Residual(input_channels=3, num_channels=6, use_1x1conv=True, strides=2)
X = torch.randn(6, 3, 4, 4)
Y = blk(X)
print(Y.shape)

输出:
torch.Size([6, 3, 4, 4])
torch.Size([6, 6, 2, 2])

# 2.第一个stage
b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),    # TODO padding
                   nn.BatchNorm2d(64), nn.ReLU(),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

# 3.定义残差stage

# 输入通道数、输出通道数、需要残差块的个数、是否第一个残差stage
def resnet_block(input_channels, num_channels, num_residuals, first_block=False):
    blk = []
    # 依次搭建每个残差块
    for i in range(num_residuals):
        if i == 0 and not first_block:  # 除了第一个残差stage(b2),其余stage的第一个残差块高宽减半
            blk.append(
                Residual(input_channels, num_channels, use_1x1conv=True, strides=2)
            )
        else:
            blk.append(Residual(num_channels, num_channels))
    return blk


b2 = nn.Sequential(*resnet_block(input_channels=64, num_channels=64, num_residuals=2, first_block=True))   # 不高宽减半、通道数加倍
b3 = nn.Sequential(*resnet_block(64, 128, 2))
b4 = nn.Sequential(*resnet_block(128, 256, 2))
b5 = nn.Sequential(*resnet_block(256, 512, 2))

# 定义网络
net = nn.Sequential(b1, b2, b3, b4, b5, nn.AdaptiveAvgPool2d((1, 1)),
                    nn.Flatten(), nn.Linear(512, 10))

X = torch.randn(size=(1, 1, 224, 224))
for layer in net:
    X = layer(X)
    print(layer.__class__.__name__, X.shape)

输出:
Sequential torch.Size([1, 64, 56, 56])
Sequential torch.Size([1, 64, 56, 56])	# 第一个残差stage并没有变换尺寸
Sequential torch.Size([1, 128, 28, 28])
Sequential torch.Size([1, 256, 14, 14])
Sequential torch.Size([1, 512, 7, 7])
AdaptiveAvgPool2d torch.Size([1, 512, 1, 1])
Flatten torch.Size([1, 512])
Linear torch.Size([1, 10])

经典的ResNet网络的结构:
在这里插入图片描述

ResNet是如何消除梯度消失的?

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值