mmpose系列(二):复现知乎大佬mmpose中的shufflenetv2+deeppose的方法

一、复现知乎

万字长文 | 手把手教你优化轻量姿态估计模型(算法篇) - 知乎 (zhihu.com)

自己根据大佬教程,复现shufflenetv2+deeppsoe 的regression方法:

首先对比shufflenetv2_heatmap 与resenet50_deeppose的config:

最主要的区别在于model的配置:

Shufflenet 基于mmcls的预训练模型,resnet为pytorch 预训练模型。

Keypoint_head的区别。

Inchannels 不同。

损失函数heatmap 方法使用MSELOSS,而regression使用SmoothL1LOSS。

因此将Shufflenet的config配置文件中的model改为如下图所示,其他配置参看考resnet50 的topdown和regression的差异:

需要添加avrgpolling层

转onnx测试,转之前修改代码

tools/deployment/pytorch2onnx.py 中的

parser.add_argument('checkpoint', help='checkpoint file')

修改为

parser.add_argument('--checkpoint', default=None, required=False, help='checkpoint file')

再执行:

python tools/deployment/pytorch2onnx.py configs/body/2d_kpt_sview_rgb_img/deeppose/mpii/shufflenetv2_mpii_256x256.py --shape 1 3 256 256

成功后并通过命令行查看

python -m onnxsim tools\deployment\tmp.onnx tmp-sim.onnx

 和大佬的模型参数一致

训练模型:这里训练了10个迭代

下一篇复现hrnet+deeppose

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值