下一章:深度篇—— CNN 卷积神经网络(二) 细说 池化(pooling) 与 反池化(unpooling)
目录内容
深度篇—— CNN 卷积神经网络(一) 细说 cnn 卷积神经网络
深度篇—— CNN 卷积神经网络(二) 细说 池化(pooling) 与 反池化(unpooling)
深度篇—— CNN 卷积神经网络(三) 关于 ROI pooling 和 ROI Align 与 插值
深度篇—— CNN 卷积神经网络(四) 使用 tf cnn 进行 mnist 手写数字 代码演示项目
本小节,细说 CNN 卷积神经网络,下一小节细说 池化 与 反池化
一. CNN 卷积神经网络
1. CNN 卷积神经的理解
CNN 卷积神经网络 (Convolution Neural Network, CNN) 是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元 ,对于大型图像处理有出色表现。卷积神经网络由一个或多个卷积层和顶端的全连接层组成,同时也包括关联权重和池化层。
卷积神经,是依靠感受野(也就是滑动窗口)去提取特征进行学习 的。

滑动窗口,就好像上图的圆圈一样,从 1 的位置,滑动到 2 的位置,再滑动到 3 的位置。滑动完一行之后,再移动都下一行去 滑动,然后,又滑动到 m 位置,再滑动到 n 的位置。这滑动窗口,就好像人的扫视一样。滑动窗口的大小,称为感受野,也就是一次能感受到多少信息量。

本文详细介绍了CNN卷积神经网络的原理,包括卷积层的理解、层级结构、卷积计算过程以及反卷积的概念。CNN通过卷积核进行特征提取,其优势在于参数共享和自动特征选择,但需要大量样本和GPU资源进行训练。
最低0.47元/天 解锁文章
3276

被折叠的 条评论
为什么被折叠?



