深度篇—— CNN 卷积神经网络(一) 细说 cnn 卷积神经网络

本文详细介绍了CNN卷积神经网络的原理,包括卷积层的理解、层级结构、卷积计算过程以及反卷积的概念。CNN通过卷积核进行特征提取,其优势在于参数共享和自动特征选择,但需要大量样本和GPU资源进行训练。
摘要由CSDN通过智能技术生成

返回主目录

返回 CNN 卷积神经网络目录

下一章:深度篇—— CNN 卷积神经网络(二)  细说 池化(pooling) 与 反池化(unpooling)

 

目录内容

深度篇—— CNN 卷积神经网络(一) 细说 cnn 卷积神经网络

深度篇—— CNN 卷积神经网络(二) 细说 池化(pooling) 与 反池化(unpooling)

深度篇—— CNN 卷积神经网络(三) 关于 ROI pooling 和 ROI Align 与 插值

深度篇—— CNN 卷积神经网络(四) 使用 tf cnn 进行 mnist 手写数字 代码演示项目

 

本小节,细说 CNN 卷积神经网络,下一小节细说 池化 与 反池化

 

一. CNN 卷积神经网络

 

1. CNN 卷积神经的理解

CNN 卷积神经网络 (Convolution Neural Network, CNN) 是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元 ,对于大型图像处理有出色表现。卷积神经网络由一个或多个卷积层和顶端的全连接层组成,同时也包括关联权重和池化层。

卷积神经,是依靠感受野(也就是滑动窗口)去提取特征进行学习 的。

滑动窗口,就好像上图的圆圈一样,从 1 的位置,滑动到 2 的位置,再滑动到 3 的位置。滑动完一行之后,再移动都下一行去 滑动,然后,又滑动到 m 位置,再滑动到 n 的位置。这滑动窗口,就好像人的扫视一样。滑动窗口的大小,称为感受野,也就是一次能感受到多少信息量。

         

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值