torch的交叉熵损失函数(cross_entropy)计算(含python代码)

1.调用

首先,torch的交叉熵损失函数调用方式为:

torch.nn.functional.cross_entropy(input, target, weight=None, size_average=None, ignore_index=-100, reduce=None, reduction='mean')

一般会写成:

import torch.nn.functional as F
F.cross_entropy(input, target)

2.参数说明

  • 输入张量)–(N, C), 其中C = 类别数;或在 2D 损失的情况下输入尺寸为(N, C, H, W) ,或在K≥1 在 K 维损失的情况下输入尺寸为 (N, C, d1, d2, ..., dK) 

  • target张量)-(N),其中每个值是 0target[i]≤​​​​​​​C-1, 或者在 K≥1 对于 K 维损失,目标张量的尺寸为(N, d1, d2, ..., dK)

  • weight ( Tensor , optional ) – 对每个类别的手动重新缩放权重。如果给定,则必须是大小为C的张量

  • size_average ( bool , optional ) – 不推荐使用。默认情况下,损失是批次中每个损失元素的平均值。请注意,对于某些损失,每个样本有多个元素。如果该字段size_average 设置为False,则对每个小批量的损失求和。当 reduce 为 时忽略False。默认:True

  • ignore_index ( int , optional ) – 指定一个被忽略且对输入梯度没有贡献的目标值。当size_average为 时 True,损失在未忽略的目标上取平均值。默认值:-100

  • reduce ( bool , optional ) – 不推荐使用。默认情况下,损失对每个小批量的观察进行平均或求和,取决于size_average。当reduceis 时False,返回每个批次元素的损失并忽略size_average。默认:True

  • reduce ( string optional ) – 指定应用于输出的缩减: 'none''mean''sum''none': 不会应用减少, 'mean': 输出的总和将除以输出中的元素数, 'sum': 输出将被求和。注意:size_average 和reduce正在被弃用,同时,指定这两个参数中的任何一个都将覆盖reduction. 默认:'mean'

3.举例说明

代码:

import torch
import torch.nn.functional as F
input = torch.randn(3, 5, requires_grad=True)
target = torch.randint(5, (3,), dtype=torch.int64)
loss = F.cross_entropy(input, target)
loss.backward()

变量输出:


input:
tensor([[-0.6314,  0.6876,  0.8655, -1.8212,  0.0963],
        [-0.5437,  0.2778, -0.1662, -0.0784, -0.6565],
        [-0.1164,  0.3882,  0.2487, -0.5318,  0.3943]], requires_grad=True)
target:
tensor([1, 0, 0])
loss:
tensor(1.6557, grad_fn=<NllLossBackward>)

4.注意

python里的torch.nn.functional.cross_entropy函数的实现是:

def cross_entropy(input, target, weight=None, size_average=None, ignore_index=-100,
                  reduce=None, reduction='mean'):
    if size_average is not None or reduce is not None:
        reduction = _Reduction.legacy_get_string(size_average, reduce)
    return nll_loss(log_softmax(input, 1), target, weight, None, ignore_index, None, reduction)

注意1:输入张量不需要经过softmax,直接从fn层拿出来的张量就可以送入交叉熵中,因为在交叉熵中已经对输入input做了softmax了。

注意2:不用对label进行one_hot编码,因为nll_loss函数已经实现了类似one-hot过程,不同之处是当class = [1, 2, 3]时要处理成从0开始[0, 1, 2]。

这里把官方网站的地址也放这里:torch.nn.functional — PyTorch master documentationicon-default.png?t=LA92https://pytorch.org/docs/1.2.0/nn.functional.html#torch.nn.functional.cross_entropy

整理不易,欢迎一键三连!!!

### 使用 PyTorch 中的交叉熵损失函数 在机器学习领域,尤其是深度学习中,交叉熵损失函数被广泛应用于分类问题。对于多类别的分类任务,`nn.CrossEntropyLoss` 是 PyTorch 提供的一个非常方便的选择[^1]。 此模块不仅实现了标准的 Softmax 层还集成了负对数似然损失 (NLL),这意味着可以简化模型构建过程而无需显式地添加额外的操作层。具体来说,在前向传播过程中,输入张量会先经过一个隐式的 softmax 变换再传递给 NLL 损失计算部分;而在反向传播期间,则自动处理梯度回传至前面各层所需的信息。 #### 创建并应用 Cross Entropy Loss 函数 为了创建 `CrossEntropyLoss` 对象,可以直接调用其构造器: ```python import torch.nn as nn criterion = nn.CrossEntropyLoss() ``` 当准备训练数据时,请注意确保标签是以整数值的形式给出而不是 one-hot 编码形式。这是因为内部已经包了将 logits 转换成概率分布的过程。假设有一个简单的例子用于说明如何使用这个损失函数来进行单次迭代更新权重参数: ```python # 假设 batch_size=3, num_classes=5 output = model(input) # output.shape should be [batch_size, num_classes], e.g., [3, 5] target = torch.tensor([1, 0, 4]) # target labels must match the number of samples and range from 0 to C-1 where C is classes count. loss = criterion(output, target) print(f'Loss value: {loss.item()}') ``` 上述代码片段展示了如何定义损失函数以及怎样利用它来评估模型输出与真实标签之间的差异程度,并据此调整优化方向以最小化该差距。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zy_destiny

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值