❓❓问题:
🔑🔑解题思路:
🌈步骤1:
首先把列表从标准格式转换成把需求量和产量均写在首行和首列位置,方便后续计算,不会与正文表格内容混淆,容易看差行。
即将标准格式:
甲 | 乙 | 丙 | 丁 | 产量 | |
东部 | 4 | 12 | 4 | 11 | 16 |
中部 | 2 | 10 | 3 | 9 | 10 |
西部 | 8 | 5 | 11 | 6 | 22 |
需求量 | 8 | 14 | 12 | 14 |
转成以下格式:
甲8 | 乙14 | 丙12 | 丁14 | |
东部16 | 4 | 12 | 4 | 11 |
中部10 | 2 | 10 | 3 | 9 |
西部22 | 8 | 5 | 11 | 6 |
🌈步骤2:
通过计算每列最小值和倒数第二小值的差值,即为该列列差,以此类推,计算每一列的列差。
即下表中红色区域所示:
甲8 | 乙14 | 丙12 | 丁14 | |
东部16 | 4 | 12 | 4 | 11 |
中部10 | 2 | 10 | 3 | 9 |
西部22 | 8 | 5 | 11 | 6 |
列差 | 2 | 5 | 1 | 3 |
🌈步骤3:
与计算列差方式类似,通过计算每行最小值和倒数第二小值的差值,即为该行行差,以此类推,计算每一行的行差。
即下表中红色区域所示:
甲8 | 乙14 | 丙12 | 丁14 | 行差 | |
东部16 | 4 | 12 | 4 | 11 | 0 |
中部10 | 2 | 10 | 3 | 9 | 1 |
西部22 | 8 | 5 | 11 | 6 | 1 |
🌈步骤4:
将行差与列差合并在一起,找到行差与列差中的最大值。
甲8 | 乙14 | 丙12 | 丁14 | 行差 | |
东部16 | 4 | 12 | 4 | 11 | 0 |
中部10 | 2 | 10 | 3 | 9 | 1 |
西部22 | 8 | 5 | 11 | 6 | 1 |
列差 | 2 | 5 | 1 | 3 |
行列差的最大值即为5,如下表所示中的黄色区域(第二列)。
甲8 | 乙14 | 丙12 | 丁14 | 行差 | |
东部16 | 4 | 12 | 4 | 11 | 0 |
中部10 | 2 | 10 | 3 | 9 | 1 |
西部22 | 8 | 5 | 11 | 6 | 1 |
2 | 5 | 1 |
🌈步骤5:
将第二列中的能提供的最大存量给该列的最小值,即将最大存量14全部给西部区域。
还有一个小细节:乙列的需求全部满足了,西部这一行中,总存量是22,乙已经用了14,西部可以提供的最大存量就应该更新成22-14=8了。此处容易忽略。
即下表中所示的绿色区域所示。
甲8 | 乙14 | 丙12 | 丁14 | 行差 | |
东部16 | 4 | 12 | 4 | 11 | 0 |
中部10 | 2 | 10 | 3 | 9 | 1 |
西部22 | 8 | 5(14) | 11 | 6 | 1 |
列差 | 2 | 5 | 1 | 3 |
🌈步骤6:
将该列的最大需求量给足之后,将该列划去,因为此时已经将乙列的所有需求量全部给了西部,不可能再给其他任何一个区域了。
划去后的表格如下表所示。
甲8 | 丙12 | 丁14 | 行差 | |
东部16 | 4 | 4 | 11 | 0 |
中部10 | 2 | 3 | 9 | 1 |
西部8 | 8 | 11 | 6 | 2 |
列差 | 2 | 1 | 3 |
🌈步骤7:
与步骤2-3相同,重复计算新表格的行差和列差。此时的行列差最大值为3,本应该是将丁列最大可提供量14全部给西部,但是西部的最大存量为8,所已行列最大存量最大需求量取最小值8,即丁给西部提供8,至此,西部的存量全部消耗完毕,可以将西部这一行划去。丁列的最大可提供量由14更新为14-8=6。
新表格的行列差、更新表格如下表所示。
甲8 | 丙12 | 丁6 | 行差 | |
东部16 | 4 | 4 | 11 | 0 |
中部10 | 2 | 3 | 9 | 1 |
西部8 | 8 | 11 | 6(8) | 1 |
列差 | 2 | 1 | 3 |
🌈步骤8:
与步骤7相同,以此类推,计算新表格的行列差和最大可提供量。此时有2列的最大值相同,可以任选一列进行分配计算。直至分配完毕。
甲8 | 丙12 | 丁6 | 行差 | |
东部16 | 4 | 4 | 11 | 0 |
中部10 | 2(8) | 3 | 9 | 1 |
列差 | 2 | 1 | 2 |
丙12 | 丁6 | 行差 | |
东部16 | 4(12) | 11(4) | 7 |
中部2 | 3 | 9(2) | 6 |
列差 | 1 | 2 |
🌈步骤9:
根据分配完毕后的表格计算最小运输费用,将运费单价乘以运输量,最后相加即可得到结果。
最终的运输分配表如下表所示。
甲8 | 乙14 | 丙12 | 丁14 | |
东部16 | 4 | 12 | 4(12) | 11(4) |
中部10 | 2(8) | 10 | 3 | 9(2) |
西部22 | 8 | 5(14) | 11 | 6(8) |
运输最小运费为:5*14+6*8+2*8+4*12+4*11+9*2=244
✅✅至此就完成全部伏格尔算法的全部计算了,计算都不是很难,但是细节很多,需要小心计算。
整理不易,欢迎一键三连!!!
送你们一条美丽的--分割线--
🌷🌷🍀🍀🌾🌾🍓🍓🍂🍂🙋🙋🐸🐸🙋🙋💖💖🍌🍌🔔🔔🍉🍉🍭🍭🍋🍋🍇🍇🏆🏆📸📸⛵⛵⭐⭐🍎🍎👍👍🌷🌷